Skip to main content
Log in

Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

To convert the lipopeptide non-producer strain Bacillus subtilis pB2 into a plipastatin and surfactin coproducer, a gene expression cassette composed of a constitutive promoter (P43), functional gene sfp, and pleiotropic regulatory gene degQ was integrated into the chromosomal amyE locus of strain B. subtilis pB2 by homologous recombination, which generated a plipastatin and surfactin co-producer. Thirteen plipastatins and fifteen surfactins were identified in lipopeptide extracts using analytical techniques, and their effects on microorganisms were described by microscopic, cytoskeleton analysis and flow-cytometry, respectively. Plipastatins isolated from the engineered strain pB2-L exhibited strong antifungal activity (MIC 16 μg ml−1) by disrupting the cell walls, membranes and cytoskeleton of Fusarium oxysporum f. sp. cucumerinum hyphae. Surfactins affected the cell membrane of Staphylococcus aureus (MIC 20 μg ml−1), resulting in nucleic acid leakage and ultimately, cell death. Based on the convenience of genetic manipulation in the engineering strain, this work could be useful for the rational design of lipopeptide synthetases via the recombination of gene fragments to generate arrays of peptide derivatives and thus expand the diversity of microbial-produced lipopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allingham J, Klenchin V, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci CMLS 63(18):2119–2134

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bie X, Lu Z, Lu F (2009) Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J Microbiol Methods 79:272–278

    Article  CAS  PubMed  Google Scholar 

  • Buchoux S, Lai-Kee-Him J, Garnier M, Tsan P, Besson F, Brisson A, Dufourc EJ (2008) Surfactin-triggered small vesicle formation of negatively charged membranes: a novel membrane-lysis mechanism. Biophys J 95:3840–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Declerck N, Joyet P, Le Coq D, Heslot H (1988) Integration, amplification and expression of the Bacillus licheniformis α-amylase gene in Bacillus subtilis chromosome. J Biotechnol 8:23–38

    Article  CAS  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis T (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878

    Article  CAS  PubMed  Google Scholar 

  • Gao L et al (2016) Translocation of the thioesterase domain for the redesign of plipastatin synthetase. Sci Rep. doi:10.1038/srep38467

    Google Scholar 

  • Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8–14

    Article  CAS  Google Scholar 

  • Gong A-D et al (2015) Antagonistic mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 10:e0116871

    Article  PubMed  PubMed Central  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Guez J, Müller C, Danze P, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134:121–126

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Seelig J (2001) Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J 81:1547–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Lu Z, Zhao H, Bie X, Lü F, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377

    Article  Google Scholar 

  • Huang X, Lu Z, Bie X, Lü F, Zhao H, Yang S (2007) Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol 74:454–461

    Article  CAS  PubMed  Google Scholar 

  • Huang K-C, Lin C-M, Tsao H-K, Sheng Y-J (2009) The interactions between surfactants and vesicles: dissipative particle dynamics. J Chem Phys 130:06B622

    Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. Biosurfactants. Springer, Heidelberg, pp 57–91

    Chapter  Google Scholar 

  • Jiang J et al (2016) Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol 16:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi Y-T (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S (2006) Phospholipase A 2 and phospholipase B activities in fungi. BBA-Mol Cell Biol Lipids 1761:1391–1399

    Article  Google Scholar 

  • Kumar A, Johri B (2012) Antimicrobial lipopeptides of Bacillus: natural weapons for biocontrol of plant pathogens. Microorganisms in sustainable agriculture and biotechnology. Springer, Netherlands, pp 91–111

    Chapter  Google Scholar 

  • Kunst F et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    Article  PubMed  Google Scholar 

  • Leclère V et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2016) Biocombinatorial synthesis of novel lipopeptides by COM domain-mediated reprogramming of the plipastatin NRPS complex. Front Microbiol. doi:10.3389/fmicb.2016.01801

    Google Scholar 

  • Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:1628–1637

    Article  CAS  PubMed  Google Scholar 

  • Mireles JR, Toguchi A, Harshey RM (2001) Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ongena M et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Tscheka C, Edwards K, Karlsson G, Heerklotz H (2011) All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. BBA-Biomembranes 1808(8):2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Pathak KV, Bose A, Keharia H (2014) Characterization of novel lipopeptides produced by bacillus tequilensis P15 using liquid chromatography coupled electron spray ionization tandem mass spectrometry (LC–ESI–MS/MS). Int J Pept Res Ther 20:133–143

    Article  CAS  Google Scholar 

  • Pecci Y, Rivardo F, Martinotti MG, Allegrone G (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J Mass Spectrom 45:772–778

    Article  CAS  PubMed  Google Scholar 

  • Steller S et al (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  • Tosato V, Albertini AM, Zotti M, Sonda S, Bruschi CV (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volpon L, Besson F, Lancelin J-M (2000) NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A 2. FEBS Lett 485:76–80

    Article  CAS  PubMed  Google Scholar 

  • Wise C, Falardeau J, Hagberg I, Avis TJ (2014) Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 104:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wong S-L (1995) Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177:5427–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wu X, Zhang S-Q (2008) Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger. Biotech Lett 30:2157–2163

    Article  CAS  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol 54:448–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 31271828) and the National Science and Technology Support program (Grant No. 2011BAD23B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Bie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 707 kb)

Fig. S1. LC–ESI–MS/MS of [M+H]+ ions at (a) 1491.84 m/z, plipastatin A (C18), (b) 1489.86 m/z, plipastatin A (unsaturated C18), (c) 1519.87 m/z, plipastatin A (C20)

Supplementary material 2 (TIFF 294 kb)

Fig. S2. LC–ESI–MS/MS of [M+H]+ ion at 1026.61 m/z representing linear surfactin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Han, J., Liu, H. et al. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie van Leeuwenhoek 110, 1007–1018 (2017). https://doi.org/10.1007/s10482-017-0874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-017-0874-y

Keywords

Navigation