Skip to main content
Log in

LFG: a candidate apoptosis regulatory gene family

  • Original paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The expanding wealth of human, model and other organism’s genomic data has allowed the identification of a distinct gene family of apoptotic related genes. Most of these genes are currently unannotated or have been subsumed under two questionably related gene families in the past. For example the transmembrane Bax inhibitor 1 (BI1) motif family has been reported to play a role in apoptosis and to consist of at least seven mammalian protein genes, GRINA, BI1, Lfg/FAIM2, Ghitm, RESC1/Tmbim1, GAAP/Tmbim4, and Tmbm1b. However, a detailed sequence and phylogenetic analysis shows that only five of these form a clear and unique protein family. This now provides information for understanding and investigating the biological roles of these proteins across a wide range of tissues in model organisms. The evolutionary relationships among these genes provide a powerful prospective for extrapolating to human conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reimers K, Choi CYU, Mau-Thek E, Vogt PM (2006) Sequence analysis shows that Lifeguard belongs to a new evolutionarily conserved cytoprotective family. Int J Mol Med 18:729–734

    PubMed  CAS  Google Scholar 

  2. Zhou J, Zhu T, Hu C et al (2008) Comparative genomics and function analysis on BI1 family. Comput Biol Chem 32:159–162

    Article  PubMed  CAS  Google Scholar 

  3. Pellicena-Palle A, Salz HK (1995) The putative Drosophila NMDARA1 gene is located on the second chromosome and is ubiquitously expressed in embryogenesis. Biochim Biophys Acta 1261:301–303

    PubMed  Google Scholar 

  4. Somia NV, Schmitt MJ, Vetter DE, Antwerp DV, Heinemann SF, Verma IM (1999) LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell death. Proc Natl Acad Sci USA 96:12667–12672

    Article  PubMed  CAS  Google Scholar 

  5. Schweitzer B, Taylor V, Welcher AA, McClelland M, Suter U (1998) Neural membrane protein 35 (NMP35): a novel member of a gene family which is highly expressed in the adult nervous system. Mol Cell Neurosci 11:260–273

    Article  PubMed  CAS  Google Scholar 

  6. Fernandez M, Segura MF, Sole C, Colino A, Comella JX, Cena V (2007) Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. J Neurochem 103:190–203

    PubMed  CAS  Google Scholar 

  7. Chen JW, Cunningham MD, Galton N, Michaelis EK (1988) Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes. Possible relationship of this protein to physiologic glutamate receptors. J Biol Chem 263:417–426

    PubMed  CAS  Google Scholar 

  8. Eaton MJ, Chen JW, Kumar KN, Cong Y, Michaelis EK (1990) Immunochemical characterization of brain synaptic membrane glutamate-binding proteins. J Biol Chem 265:16195–16204

    PubMed  CAS  Google Scholar 

  9. Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK (1991) Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354:70–73

    Article  PubMed  CAS  Google Scholar 

  10. Ly AM, Michaelis EK (1991) Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-d-aspartate-activated cation channels from brain synaptic membranes. Biochemistry 30:4307–4316

    Article  PubMed  CAS  Google Scholar 

  11. Pal R, Eaton MJ, Islam S, Hake-Frendscho M, Kumar KN, Michaelis EK (1999) Immunocytochemical and in situ hybridization studies of the expression and distribution of three subunits of a complex with N-methyl-d-aspartate receptor-like properties. Neuroscience 94:1291–1311

    Article  PubMed  CAS  Google Scholar 

  12. Mattson MP, Wang H, Michaelis EK (1991) Developmental expression, compartmentalization, and possible role in excitotoxicity of a putative NMDA receptor protein in cultured hippocampal neurons. Brain Res 565:94–108

    Article  PubMed  CAS  Google Scholar 

  13. Bao X, Hui D, Naassila M, Michaelis EK (2001) Chronic ethanol exposure increases gene transcription of subunits of an N-methyl-d-aspartate receptor-like complex in cortical neurons in culture. Neurosci Lett 315:5–8

    Article  PubMed  CAS  Google Scholar 

  14. Bhave SV, Snell LD, Tabakoff B, Hoffman PL (1996) Mechanism of ethanol inhibition of NMDA receptor function in primary cultures of cerebral cortical cells. Alcohol Clin Exp Res 20:934–941

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Michaelis ML, Michaelis EK (1997) Effects of chronic ethanol treatment on the expression of calcium transport carriers and NMDA/glutamate receptor proteins in brain synaptic membranes. J Neurochem 69:1559–1569

    Article  PubMed  CAS  Google Scholar 

  16. Mattson MP, Kumar KN, Wang H, Cheng B, Michaelis EK (1993) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J Neurosci 13:4575–4588

    PubMed  CAS  Google Scholar 

  17. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  18. Szuchet S, Plachetzki DC, Eaton KS (2001) Oligodendrocyte transmembrane protein: a novel member of the glutamate-binding protein subfamily. Biochem Biophys Res Commun 283:900–907

    Article  PubMed  CAS  Google Scholar 

  19. Matsuda A, Suzuki Y, Honda G et al (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22:3307–3318

    Article  PubMed  CAS  Google Scholar 

  20. Aikawa H, Tomita H, Ishiguro S-i, Nishikawa S, Sugano E, Tamai M (2003) Increased expression of glutamate binding protein mRNA in rat retina after ischemia-reperfusion injury. Tohoku J Exp Med 199:25–33

    Article  PubMed  CAS  Google Scholar 

  21. Tachikawa K, Sasaki S, Maeda T, Nakajima K (2008) Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci Res 60:135–146

    Article  PubMed  CAS  Google Scholar 

  22. Choi CYU, Reimers K, Allmeling C, Kall S, Choi Y-H, Vogt PM (2007) Inhibition of apoptosis by expression of antiapoptotic proteins in recombinant human keratinocytes. Cell Transpl 16:663–674

    Google Scholar 

  23. Beier CP, Wischhusen J, Gleichmann M et al (2005) FasL (CD95L/APO-1L) resistance of neurons mediated by phosphatidylinositol 3-kinase-Akt/protein kinase B-dependent expression of lifeguard/neuronal membrane protein 35. J Neurosci 25:6765–6774

    Article  PubMed  CAS  Google Scholar 

  24. Schweitzer B, Suter U, Taylor V (2002) Neural membrane protein 35/Lifeguard is localized at postsynaptic sites and in dendrites. Brain Res 107:47–56

    Article  CAS  Google Scholar 

  25. Yoshisue H, Suzuki K, Kawabata A et al (2002) Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 162:323–334

    Article  PubMed  CAS  Google Scholar 

  26. Zhao H, Ito A, Kimura SH et al (2006) RECS1 deficiency in mice induces susceptibility to cystic medial degeneration. Genes Genet Syst 81:41–50

    Article  PubMed  CAS  Google Scholar 

  27. Zhao H, Ito A, Sakai N, Matsuzawa Y, Yamashita S, Nojima H (2006) RECS1 is a negative regulator of matrix metalloproteinase-9 production and aged RECS1 knockout mice are prone to aortic dilation. Circ J 70:615–624

    Article  PubMed  CAS  Google Scholar 

  28. Gubser C, Bergamaschi D, Hollinshead M, Lu X, van Kuppeveld FJM, Smith GL (2007) A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog 3:e17

    Article  PubMed  CAS  Google Scholar 

  29. Van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  30. Lee S, Jo M, Lee J, Koh SS, Kim S (2007) Identification of novel universal housekeeping genes by statistical analysis of microarray data. J Biochem Mol Biol 40:226–231

    PubMed  CAS  Google Scholar 

  31. He C, Zuo Z, Chen H et al (2007) Genome-wide detection of testis- and testicular cancer-specific alternative splicing. Carcinogenesis 28:2484–2490

    Article  PubMed  CAS  Google Scholar 

  32. Chae H-J, Ke N, Kim H-R et al (2003) Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene 323:101–113

    Article  PubMed  CAS  Google Scholar 

  33. Kleene KC (2005) Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev Biol 277:16–26

    Article  PubMed  CAS  Google Scholar 

  34. Huckelhoven R (2004) BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299–307

    Article  PubMed  CAS  Google Scholar 

  35. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  37. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  38. Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  PubMed  CAS  Google Scholar 

  39. Bingham J, Sudarsanam S (2000) Visualizing large hierarchical clusters in hyperbolic space. Bioinformatics 16:660–661

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nancy Sands for her help with the manuscript. GG dedicates his efforts to the memory of his mentors Harvey R. Colten, Fred S. Rosen and Paul M. Gallop. He also thanks Olga A. Goldberger, Anatoly D. Altstein, Dmitry Leyfer, Juerg Straubhaar, Scott C. Mohr, Nelson A. Arango and Kerstin Reimers for their diverse input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temple F. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19 kb)

Supplementary material 2 (XLS 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Smith, T.F. & Goldberger, G. LFG: a candidate apoptosis regulatory gene family. Apoptosis 14, 1255–1265 (2009). https://doi.org/10.1007/s10495-009-0402-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0402-2

Keywords

Navigation