Skip to main content

Advertisement

Log in

The Saline Lakes of the McMurdo Dry Valleys, Antarctica

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The McMurdo Dry Valleys of Antarctica are among a rare group of ice-free regions lying along the coast of an otherwise ice-burdened continent. For Antarctica, these are highly atypical regions of exposed rock and barren soils. Within their 4,000 km2 expanse, the valleys contain a number of permanently ice-covered, closed-basin lakes, which range from freshwater to highly saline environments. This paper examines the physical structure, geochemistry, nutrient and trace metal dynamics, biology, and hydrologic history of saline Lake Bonney (both east and west lobes), Fryxell, Vanda, and Joyce and provides an update to recently published volumes on these pristine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiken G, McKnight DM, Harnish R, Wershaw R (1996) Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry 34:157–188. doi:10.1007/BF00000900

    Google Scholar 

  • Allan JD (1995) Stream ecology: structure and function of running waters. Chapman and Hall, London

    Google Scholar 

  • Andersen DT, McKay CP, Wharton RA Jr (1998) Dissolved gases in perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Antarct Sci 10:124–133. doi:10.1017/S0954102098000170

    Google Scholar 

  • Angino EE, Armitage KB (1963) A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica. J Geol 71:89–95

    Google Scholar 

  • Angino EE, Armitage KB, Tash JC (1962) Chemical stratification in Lake Fryxell, Victoria Land, Antarctica. Science 18:34–36

    Google Scholar 

  • Angino EE, Armitage KB, Tash JC (1965) A chemical and limnological study of Lake Vanda, Victoria Land, Antarctica. Univ Kans Sci Bull 45:1097–1118

    Google Scholar 

  • Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH, Moorhead DL (2007) Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. J Geophys Res 112:G01010–G01011. doi:10.1029/2005JG000141

    Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008) Persistent effects of a discrete warming event on a polar desert ecosystem. Glob Change Biol 14:1–13

    Google Scholar 

  • Black RF, Jackson ML, Berg TE (1965) Saline discharge from Taylor Glacier, Victoria Land, Antarctica. J Geol 74:175–181

    Google Scholar 

  • Bomblies A, McKnight DM, Andrews ED (2001) Retrospective simulation of lake-level rise in Lake Bonney based on recent 21-yr record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. J Paleolimnol 25:477–492. doi:10.1023/A:1011131419261

    Google Scholar 

  • Boswell CR, Brooks RR, Wilson AT (1967) Some trace elements in lakes of the McMurdo oasis, Antarctica. Geochim Cosmochim Acta 31:731–736. doi:10.1016/S0016-7037(67)80028-0

    Google Scholar 

  • Bratina BJ, Stevenson BS, Green WJ, Schmidt TM (1998) Manganese reduction by microbes from the oxic regions of Lake Vanda (Antarctica) water column. Appl Environ Microbiol 64:3791–3797

    Google Scholar 

  • Bruland KW, Franks RP, Knauer GA, Martin JH (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in seawater. Anal Chim Acta 105:233–245. doi:10.1016/S0003-2670(01)83754-5

    Google Scholar 

  • Buffan-Dubau E, Pringault O, de Wit R (2001) Artificial cold-adapted microbial mats cultured from Antarctic lake samples. 1. Formation and structure. Aquat Microb Ecol 26:115–125. doi:10.3354/ame026115

    Google Scholar 

  • Canfield DE, Green WJ (1985) The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry 1:233–256. doi:10.1007/BF02187201

    Google Scholar 

  • Canfield DE, Green WJ, Nixon P (1995) Pb-210 and stable Pb through the redox transition zone of an Antarctic lake. Geochim Cosmochim Acta 59:2459–2468. doi:10.1016/0016-7037(95)00140-9

    Google Scholar 

  • Carlson CA, Philips FM, Elsmore D, Bentley HW (1990) Chlorine-36 tracing of salinity sources in the dry valleys of Victoria Land, Antarctica. Geochim Cosmochim Acta 54:311–318. doi:10.1016/0016-7037(90)90320-K

    Google Scholar 

  • Cartwright K, Harris HJH (1981) Hydrogeology of the Dry Valley region, Antarctica. In: McGinnis LD (ed) Dry Valley drilling project. Antarctic Research Series, 33. AGU, Washington, DC, pp 193–214

    Google Scholar 

  • Chinn TJ (1981) Hydrology and climate in the Ross Sea area. J R Soc N Z 11:373–386

    Google Scholar 

  • Chinn TJ (1993) Physical hydrology of the Dry Valley lakes. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 1–52

    Google Scholar 

  • Clarkson P (2007) Antarctic: definitions and boundaries. In: Riffenburgh B (ed) Encyclopedia of the Antarctic. Routledge, New York, pp 47–51

    Google Scholar 

  • Craig H, Wharton RA Jr, McKay CP (1992) Oxygen supersaturation in ice-covered Antarctic lakes: biological versus physical contributions. Science 255:318–321. doi:10.1126/science.11539819

    Google Scholar 

  • DeCarlo EH, Green WJ (2002) Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta 66:1323–1333. doi:10.1016/S0016-7037(01)00861-4

    Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520. doi:10.1038/nature710

    Google Scholar 

  • Eugster HP, Jones BF (1979) Behavior of major solutes during closed-basin brine evolution. Am J Sci 279:609–631

    Google Scholar 

  • Foreman CM, Wolf CF, Priscu JC (2004) Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquat Geochem 10:239–268. doi:10.1007/s10498-004-2261-3

    Google Scholar 

  • Goldman CR, Mason DT, Hobbie JE (1967) Two Antarctic desert lakes. Limnol Oceanogr 12:295–310

    Google Scholar 

  • Gooseff MN, McKnight DM, Lyons WB, Blum AE (2002) Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resour Res 38:1279. doi:10.1029/2001WR000834

    Google Scholar 

  • Graedel TE, Crutzen PJ (1995) Atmosphere, climate and change. Scientific American Library, New York

    Google Scholar 

  • Graham EY, Lyons WB, Welch KA (1999) The concentration and behavior of uranium in Antarctic lakes and streams. In: Holland G, Tanner SD (eds) Plasma source mass spectrometry: developments and applications. The Royal Soc of Chemistry, pp 132–140

  • Green WJ, Canfield DE (1984) Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochim Cosmochim Acta 48:2457–2467. doi:10.1016/0016-7037(84)90297-7

    Google Scholar 

  • Green WJ, Friedmann EI (1993) Physical and biogeochemical processes in Antarctic lakes. Antarct Research Series, vol 59. AGU, Washington, DC

  • Green WJ, Canfield DE, Lee GF, Jones RA (1986) Mn, Fe, Cu and Cd distributions and residence times in closed-basin Lake Vanda (Wright Valley, Antarctica). Hydrobiologia 134:237–248. doi:10.1007/BF00008492

    Google Scholar 

  • Green WJ, Angle MP, Chave KE (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry valleys. Geochim Cosmochim Acta 52:1265–1274. doi:10.1016/0016-7037(88)90280-3

    Google Scholar 

  • Green WJ, Gardner TJ, Ferdelman TG, Angle MP, Varner LC, Nixon P (1989) Geochemical processes in the Lake Fryxell Basin (Victoria Land, Antarctica). In: Vincent WF, Ellis-Evans JC (eds) High latitude limnology. Kluwer Academic Publishers, Dordrecht, pp 129–148

    Google Scholar 

  • Green WJ, Canfield DE, Shengsong Y, Chave KE, Ferdelman TG, Delanois G (1993) Metal transport and release processes in Lake Vanda: the role of oxide phases. In: Green WJ, Friedman EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 145–163

    Google Scholar 

  • Green WJ, Canfield DE, Nixon P (1998) Cobalt cycling and fate in Lake Vanda. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72. AGU, Washington, DC, pp 205–215

    Google Scholar 

  • Green WJ, Stage BR, Bratina BJ, Wager S, Preston A, O’Bryan K, Shacat J, Newell S (2004) Nickel, copper, zinc, and cadmium cycling with manganese in Lake Vanda (Wright Valley, Antarctica). Aquat Geochem 10:303–323. doi:10.1007/s10498-004-2263-1

    Google Scholar 

  • Green WJ, Stage BR, Preston A, Wagers S, Shacat J, Newell S (2005) Geochemical processes in the Onyx River, Wright Valley, Antarctica: major ions, nutrients, trace metals. Geochim Cosmochim Acta 69:839–850. doi:10.1016/j.gca.2004.08.001

    Google Scholar 

  • Hall B, Denton G (2000) Radiocarbon chronology of Ross Sea Drift, Eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the Last Glacial Maximum. Geogr Ann Ser A 82(2/3):305–336

    Google Scholar 

  • Hawes I, Hall J, Howard-Williams C, James M, Schwarz A-M (1996) Seasonal and long-term changes in the physical, chemical and biological features of the Lake Vanda water column. In: Proceedings of the international workshop on polar desert ecosystems, 1–4 July, Christchurch, NZ

  • Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Miner Soc Am Spec Publ 3:273–290

    Google Scholar 

  • Healy M, Webster-Brown JG, Brown KL, Lane V (2006) Chemistry and stratification of Antarctic Meltwater Ponds II: inland ponds in the McMurdo Dry Valleys, Victoria Land, Antarctica. Antarct Sci 18(4):525–533. doi:10.1017/S0954102006000575

    Google Scholar 

  • Henderson GM, Hall BL, Smith A, Robinson LF (2006) Control on (234U/238U) in lake water: a study in the Dry Valleys of Antarctica. Chem Geol 226:298–308. doi:10.1016/j.chemgeo.2005.09.026

    Google Scholar 

  • Hendy CH (2000) Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geogr Ann 82A(2–3):411–432

    Google Scholar 

  • Hendy CH, Wilson AT, Popplewell KB, House DA (1977) Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climate changes. N Zeal J Geol Geop 20:1103–1122

    Google Scholar 

  • Hendy CH, Healy TR, Rayner EM, Shaw J, Wilson AT (1979) Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quat Res 11:172–184. doi:10.1016/0033-5894(79)90002-4

    Google Scholar 

  • Heywood RB (1977) Antarctic freshwater ecosystems: review and synthesis. In: Adaptations within Antarctic Ecosystem (Proceedings of the SCAR symposium antarctic biology 3rd 1974), pp 801–828

  • Heywood RB (1984) Antarctic inland waters. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, San Diego, pp 279–344

    Google Scholar 

  • Hobbie JE (1984) Polar limnology. In: Tabu FB (ed) Lakes and reservoirs. Elsevier, New York, pp 63–105

    Google Scholar 

  • Hood EM, Howes BL, Jenkins WJ (1998) Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnol Oceanogr 43(2):265–272

    Google Scholar 

  • Howard-Williams C, Hawes I, Schwarz AM (1997) Sources and sinks of nutrients in a polar desert stream, the Onyx River, Antarctica. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 155–177

    Google Scholar 

  • Howes BL, Smith RL (1990) Sulfur cycling in a permanently ice-covered amictic Antarctic lake, Lake Fryxell. Antarct J US 25:230–233

    Google Scholar 

  • Hulbe C (2007) Glaciers and ice streams. In: Riffenburgh B (ed) Encyclopedia of the Antarctic. Routledge, New York, pp 463–466

    Google Scholar 

  • Jones LM, Faure GF (1978) A study of strontium isotopes in lakes and surficial deposits of the ice-free valleys, southern Victoria Land, Antarctica. Chem Geol 22:107–120. doi:10.1016/0009-2541(78)90027-X

    Google Scholar 

  • Jones-Lee A, Lee GF (1993) The relationship between phosphorus load and eutrophication response in Lake Vanda. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 197–214

    Google Scholar 

  • Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72(2):1663–1666. doi:10.1128/AEM.72.2.1663-1666.2006

    Google Scholar 

  • Lawson J, Doran PT, Kenig F, Des Marais DJ, Priscu JC (2004) Stable carbon and nitrogen isotopic composition of benthic and pelagic organic matter in lakes of the McMurdo Dry Valleys, Antarctica. Aquat Geochem 10:269–301. doi:10.1007/s10498-004-2262-2

    Google Scholar 

  • Laybourn-Parry J (1997) The microbial loop in Antarctic lakes. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 231–240

    Google Scholar 

  • Laybourn-Parry J, Bell EM, Roberts EC (2000) Protozoan growth rates in Antarctic lakes. Polar Biol 23:445–451. doi:10.1007/s003009900103

    Google Scholar 

  • Love FG, Simmons GM Jr, Parker BC, Wharton RA Jr, Seaburg KG (1983) Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiol J 3:33–48

    Google Scholar 

  • Lyons WB, Mayewski PA (1993) The geochemical evolution of terrestrial waters in the Antarctic: the role of rock-water interaction. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 135–147

    Google Scholar 

  • Lyons WB, Welch KA (1997) Lithium in waters of a polar desert. Geochim Cosmochim Acta 61(20):4309–4319. doi:10.1016/S0016-7037(97)00203-2

    Google Scholar 

  • Lyons WB, Welch KA, Sharma P (1998a) Chlorine-36 in the waters of the McMurdo Dry Valleys lakes, southern Victoria Land, Antarctica: Revisited. Geochim Cosmochim Acta 62:185–191. doi:10.1016/S0016-7037(98)00002-7

    Google Scholar 

  • Lyons WB, Welch KA, Neumann K, Toxey JK, McArthur R, Williams C, McKnight DM, Moorhead D (1998b) Geochemical linkages among glaciers, streams, and lakes within the Taylor Valley, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72. AGU, Washington, DC, pp 77–92

    Google Scholar 

  • Lyons WB, Fountain A, Doran P, Priscu JC, Neumann K, Welch KA (2000) Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshw Biol 43:355–367. doi:10.1046/j.1365-2427.2000.00513.x

    Google Scholar 

  • Lyons WB, Nezat CA, Benson LV, Bullen TD, Graham EY, Kidd J, Welch KA, Thomas JM (2003) Strontium isotopic signatures of the streams and lakes of Taylor Valley, southern Victoria Land, Antarctica: chemical weathering in a polar climate. Aquat Geochem 8:875–895

    Google Scholar 

  • Lyons WB, Welch KA, Snyder G, Olesik J, Graham EY, Marion GM, Poreda RJ (2005) Halogen geochemistry of the McMurdo dry valleys lakes, Antarctica: clues to the origin of solutes and lake evolution. Geochim Cosmochim Acta 69:305–323. doi:10.1016/j.gca.2004.06.040

    Google Scholar 

  • Lyons WB, Laybourn-Parry J, Welch KA, Priscu JC (2006) Antarctic lake systems and climate change. In: Bergstrom DM et al (eds) Trends in Antarctic terrestrial and limnetic ecosystems. Springer, Dordrecht, pp 273–295

    Google Scholar 

  • Marshall W, Laybourn-Parry J (2002) The balance between photosynthesis and grazing in Antarctic mixotrophic cryptophytes during summer. Freshw Biol 47:2060–2070. doi:10.1046/j.1365-2427.2002.00950.x

    Google Scholar 

  • Masuda N, Nishimura M, Torii T (1982) Pathway and distribution of trace elements in Lake Vanda, Antarctica. Nature 298:154–156. doi:10.1038/298154a0

    Google Scholar 

  • Matsubaya O, Sakal H, Torii T, Burton H, Kerry K (1979) Antarctic saline lakes—stable isotopic ratios, chemical composition and evolution. Geochim Cosmochim Acta 43:7–25. doi:10.1016/0016-7037(79)90042-5

    Google Scholar 

  • Maurice PA, McKnight DM, Leff L, Fulghum JE, Gooseff M (2002) Direct observation of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream. Geochim Cosmochim Acta 66(8):1335–1347. doi:10.1016/S0016-7037(01)00890-0

    Google Scholar 

  • McKnight DM, Aiken GR, Smith RL (1991) Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica. Limnol Oceanogr 36(5):998–1006

    Article  Google Scholar 

  • McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM (1999) Dry Valley streams in Antarctica: ecosystems waiting for water. Bioscience 49(12):985–995. doi:10.2307/1313732

    Google Scholar 

  • McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861. doi:10.1046/j.1529-8817.2000.00031.x

    Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46(1):38–48

    Google Scholar 

  • McKnight DM, Runkel RL, Tate CM, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23(2):171–188. doi:10.1899/0887-3593(2004)023<0171:INAPDO>2.0.CO;2

    Google Scholar 

  • Miller LG, Aiken GR (1996) Effects of glacial meltwater inflows and moat freezing on mixing in an ice-covered Antarctic lake as interpreted from stable isotope and tritium distributions. Limnol Oceanogr 41(5):966–976

    Google Scholar 

  • Moorhead D, Schmeling J, Hawes I (2005) Contributions of benthic microbial mats to net primary production in Lake Hoare, Antarctica. Antarct Sci 17:33–45. doi:10.1017/S0954102005002403

    Google Scholar 

  • Nakai N, Kiyoshu H, Wada H, Takimoto M (1975) Stable isotope studies of salts and water from the dry valleys, Antarctica, I, Origin of salts and water and the geologic history of Lake Vanda. In: Torii T (ed) Geochemical and geophysical studies of the Dry Valleys, Victoria Land, Antarctica. Mem. Spec. Issue 4, National Institute of Polar Research, Tokyo, pp 30–44

  • Nezat CA, Lyons WB, Welch KA (2001) Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). GSA Bull 113:1401–1408

    Google Scholar 

  • Neumann K, Lyons WB, Priscu JC, Donahoe RJ (2001) CO2 concentrations in perennially ice-covered lakes of Taylor Valley, Antarctica. Biogeochemistry 56:27–50. doi:10.1023/A:1011992719694

    Google Scholar 

  • Parker BC, Simmons GM, Seaburg KG, Cathy DD, Allnutt FCT (1982) Comparative ecology of plankton communities in seven Antarctic oasis lakes. J Plankton Res 4:271–286. doi:10.1093/plankt/4.2.271

    Google Scholar 

  • Poreda RJ, Hunt AG, Lyons WB, Welch KA (2004) The Helium isotopic chemistry of Lake Bonney, Taylor Valley Antarctica: timing of Late Holocene climate change in Antarctica. Aquat Geochem 10:353–371. doi:10.1007/s10498-004-2265-z

    Google Scholar 

  • Priddle J (1985) Terrestrial habitats-Inland waters. In: Bonner WN, Walton DWH (eds) Key environments–Antarctica. Pergamon, New York, pp 118–132

    Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227. doi:10.1111/j.1365-2427.1995.tb00882.x

    Google Scholar 

  • Priscu JC (1997) The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Glob Change Biol 3:301–315. doi:10.1046/j.1365-2486.1997.00147.x

    Google Scholar 

  • Priscu JC (1998) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72. AGU, Washington, DC

  • Priscu JC, Downes MT, McKay CP (1996) Extreme supersaturation of nitrous oxide in a poorly ventilated Antarctic lake. Limnol Oceanogr 41(7):1544–1551

    Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098. doi:10.1126/science.280.5372.2095

    Google Scholar 

  • Priscu JC, Wolf CF, Takacs CD, Fritsen CH, Laybourn-Parry J, Roberts EC, Sattler B, Lyons WB (1999) Carbon transformations in a perennially ice-covered Antarctic lake. Bioscience 49(12):997–1008. doi:10.2307/1313733

    Google Scholar 

  • Pugh HE, Welch KA, Lyons WB, Priscu JC, McKnight DM (2003) The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica. Int J Astrobiol 1(4):401–413. doi:10.1017/S1473550403001332

    Google Scholar 

  • Ragotzkie RA, Likens GE (1964) The heat balance of two Antarctic lakes. Limnol Oceanogr 9:412–425

    Google Scholar 

  • Roberts EC, Laybourn-Parry J (1999) Mixotrophic cryptophytes and their predators in the dry valleys of Antarctica. Freshw Biol 41:737–746. doi:10.1046/j.1365-2427.1999.00401.x

    Google Scholar 

  • Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72(8):5562–5568. doi:10.1128/AEM.00702-06

    Google Scholar 

  • Shacat JA, Green WJ, DeCarlo EH, Newell S (2004) The geochemistry of Lake Joyce, McMurdo Dry Valleys, Antarctica. Aquat Geochem 10:325–352

    Google Scholar 

  • Shirtcliffe TGL (1964) Lake Bonney, Antarctica: cause of the elevated temperatures. J Geophys Res 69(24):5257–5268. doi:10.1029/JZ069i024p05257

    Google Scholar 

  • Simmons GM Jr, Vestal JR, Wharton RA Jr (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 165–196

    Google Scholar 

  • Smith GI, Friedman I (1993) Lithology and paleoclimatic implications of lacustrine deposits around Lake Vanda and Don Juan Pond, Antarctica. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 83–94

    Google Scholar 

  • Smith RL, Miller LG, Howes BL (1993) The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, Antarctic lake. Biogeochemistry 21:95–115. doi:10.1007/BF00000873

    Google Scholar 

  • Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valley Lakes. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72. AGU, Washington, DC, pp 153–188

    Google Scholar 

  • Toth DJ, Lerman A (1975) Stratified lake and oceanic brines: salt movement and time limits of existence. Limnol Oceanogr 20:715–728

    Google Scholar 

  • Tyler SW, Cook PG, Butt AZ, Thomas JM, Doran PT, Lyons WB (1998) Evidence of deep circulation in two perennially ice-covered Antarctic lakes. Limnol Oceanogr 43(4):625–635

    Google Scholar 

  • Vincent WF, Vincent CL (1982) Factors controlling phytoplankton production in Lake Vanda (77°S). Can J Fish Aquat Sci 39:1602–1609

    Article  Google Scholar 

  • Wagner B, Melles M, Doran PT, Kenig F, Forman SL, Pierau R, Allen P (2006) Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeogr Palaeocl 241:320–337. doi:10.1016/j.palaeo.2006.04.003

    Google Scholar 

  • Webster JG (1994) Trace metal behavior in oxic and anoxic Ca–Cl brine of the Wright Valley, Antarctica. Chem Geol 112:255–274. doi:10.1016/0009-2541(94)90028-0

    Google Scholar 

  • Webster J, Howard-Williams C, Hawes I, Downes M, Timperly M (1996) Evidence for climate change in the recent evolution of a high latitude proglacial lake. Antarct Sci 8:49–59. doi:10.1017/S0954102096000090

    Google Scholar 

  • Webster-Brown JG, Brown KS (2007) Trace metals in cyanobacterial mats, phytoplankton and sediments of the Lake Vanda region, Antarctica. Antarct Sci 19:311–319. doi:10.1017/S0954102007000417

    Google Scholar 

  • Welch KA, Neumann K, McKnight DM, Fountain AG, Lyons WB (2000) Chemistry and lake dynamics of the Taylor Valley Lakes, Antarctica: the importance of long-term monitoring. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. SCAR VII Symposium Volume, pp 282–287

  • Wharton RA Jr, McKay CP, Clow GD, Andersen DT (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. In: Green WJ, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. Antarctic Research Series, 59. AGU, Washington, DC, pp 53–70

    Google Scholar 

  • Wilson AT (1964) Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1200 years ago. Nature 201:176–177. doi:10.1038/201176b0

    Google Scholar 

  • Wilson AT (1979) Geochemical problems of the Antarctic dry areas. Nature 280:205–280. doi:10.1038/280205a0

    Google Scholar 

  • Wilson AT (1981) A review of the geochemistry and lake physics of the Antarctic dry areas. In: McGinnis LD (ed) Dry Valley drilling project. Antarctic Research Series, 33. AGU, Washington, DC, pp 185–192

    Google Scholar 

  • Wilson EO (2004) The future of life. Alfred Knopf, New York

    Google Scholar 

  • Yusa Y (1975) On the water temperature in Lake Vanda, Victoria Land, Antarctica. In: Torii T (ed) Geochemical and geophysical studies of the Dry Valleys, Victoria Land, Antarctica. Mem. Spec. Issue 4, National Institute of Polar Research, Tokyo, pp 75–89

Download references

Acknowledgments

WBL’s work has been supported through the following National Science Foundation grants: OPP-9211773, OPP-9813061, OPP ANT-0423595. The MCM-LTER results discussed in this paper were collected and analyzed by a number of diligent and dedicated individuals but, in particular, special thanks go to J.C. Priscu. D.M. McKnight, P.T. Doran, J. Laybourn-Parry, and K.A. Welch. Both authors thank Kathy Welch, Michele Larrimer, and Chris Gardner for their help and expertise in preparing the manuscript. WJG’s work has been funded by the National Science Foundation. Much gratitude is owed to the many fine undergraduate students who participated in this research and to the author’s friends and collaborators over the years: Don Canfield, Tom Gardner, Tim Ferdelman, Mike Angle, and Bonnie Bratina. Thanks, also, to Bob Benoit of Virginia Tech who introduced the author to the McMurdo Dry Valleys and to Gunter Faure and Fred Lee who provided much-needed encouragement and insight during the early days of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, W.J., Lyons, W.B. The Saline Lakes of the McMurdo Dry Valleys, Antarctica. Aquat Geochem 15, 321–348 (2009). https://doi.org/10.1007/s10498-008-9052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9052-1

Keywords

Navigation