Skip to main content

Advertisement

Log in

Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Biological invasions are ecologically and economically costly. Understanding the major mechanisms that contribute to an alien species becoming invasive is seen as essential for limiting the effects of invasive alien species. However, there are a number of fundamental questions that need addressing such as why some communities are more vulnerable to invasion than others and, indeed, why some alien species become widespread and abundant. The enemy release hypothesis (ERH) is widely evoked to explain the establishment and proliferation of an alien species. ERH predicts that an alien species introduced to a new region should experience a decrease in regulation by natural enemies which will lead to an increase in the distribution and abundance of the alien species. At the centre of this theory is the assumption that natural enemies are important regulators of populations. Additionally, the theory implies that such natural enemies have a stronger regulatory effect on native species than they do on alien species in the introduced range, and this disparity in enemy regulation results in increased population growth of the alien species. However, empirical evidence for the role of the ERH in invasion success is lacking, particularly for invertebrates. Many studies equate a reduction in the number of natural enemies associated with an alien species to release without studying population effects. Further insight is required in relation to the effects of specific natural enemies on alien and native species (particularly their ability to regulate populations). We review the role of ecological models in exploring ERH. We suggest that recent developments in molecular technologies offer considerable promise for investigating ERH in a community context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aebi A, Schönrogge K, Melika G, Alma A, Bosio G, Quacchia A, Picciau L, Abe Y, Moriya S, Yara K, Seljak G, Stone GN (2006) Parasitoid recruitment to the globally invasive chestnut gall wasp Dryocosmus kuriphilus. In: Ozaki K, Yukawa J, Ohgushi T, Price PW (eds) Ecology and evolution of galling arthropods and their associates. Springer, Tokyo

    Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715

    Article  Google Scholar 

  • Aliabadi BK, Juliano SA (2002) Escape from gregarine parasites affects the competitive impact of an invasive mosquito. Biol Invasions 4:283–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Arnaud PH (1978) A host-parasite catalog of North American Tachinidae (Diptera). US Dep Agric Misc Publ 1319

  • Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure, and development. In: Waage J, Greathead D (eds) Insect parasitoid. Academic Press, London, UK

    Google Scholar 

  • Baalen MV, Křivan V, Rijn PV, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:512–524

    PubMed  Google Scholar 

  • Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 7:e1000179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barney J (2006) North American history of two invasive plant species: phytogeographic distribution, dispersal vectors, and multiple introductions. Biol Invasions 8:703–717

    Article  Google Scholar 

  • Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biol Invasions 10:259–272

    Article  Google Scholar 

  • Berkvens NJ, Moens J, Berkvens D, Samih MA, Tirry L, De Clercq P (2010) Dinocampus coccinellae as a parasitoid of the invasive ladybird Harmonia axyridis in Europe. Biol Control 53:92–99

    Article  Google Scholar 

  • Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Blumenthal D, Mitchell CE, Pysěk P, Jarošík V (2009) Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci 106:7899–7904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Carroll SP (2007) Natives adapting to invasive species: ecology, genes and the sustainability of conservation. Ecol Res 22:892–901

    Article  Google Scholar 

  • Claridge MF (1962) Andricus quercuscalicis (Burgsdorf) in Britain (Hym., Cynipidae). Entomologist 95:60–61

    Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac Hj (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Article  Google Scholar 

  • Collins M, Crawley MJ, McGavin GC (1983) Survivorship of the sexual and agamic generations of Andricus quercuscalicis on Quercus cerris and Q. robur. Ecol Entomol 8:133–138

    Article  Google Scholar 

  • Cornell HV, Hawkins BA (1993) Accumulation of native parasitoid species on introduced herbivores: a comparison of “host as natives” and “host as invaders”. Am Nat 141:847–865

    Article  CAS  PubMed  Google Scholar 

  • Cottrell TE, Shapiro-Ilan DI (2003) Susceptibility of a native and an exotic lady beetle (Coleoptera: Coccinellidae) to Beauveria bassiana. J Invertebr Pathol 84:137–144

    Article  PubMed  Google Scholar 

  • Cox GW (2004) Alien species and evolution: the evolutionary ecology of exotic plants, animals, microbes, and interacting native species. Island Press, Washington

    Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, van Engelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • De Moraes CM, Mescher MC (2005) Intrinsic competition between larval parasitoids with different degrees of host specificity. Ecol Entomol 30:564–570

    Article  Google Scholar 

  • Debach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. University Press, Cambridge

    Google Scholar 

  • Drake JM (2003) The paradox of the parasites: implications for biological invasion. Proc R Soc Lond B (Suppl) Biol Lett 270:S133–S135

    Article  Google Scholar 

  • Ehrlich PR, Birch L (1967) The “balance of nature” and “population control”. Am Nat 101:97–107

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London, UK

    Book  Google Scholar 

  • Gamboa GJ, Noble MA, Thom MC, Togal JL, Srinivasan R, Murphy BD (2004) The comparative biology of two sympatric paper wasps in Michigan, the native Polistes fuscatus and the invasive Polistes dominulus (Hymenoptera, Vespidae). Insectes Sociaux 51:153–157

    Article  Google Scholar 

  • Georgiev BB, Sánchez MI, Vasileva GP, Nikolov PN, Green AJ (2007) Cestode parasitism in invasive and native brine shrimps (Artemia spp.) as a possible factor promoting the rapid invasion of A. franciscana in the Mediterranean region. Parasitol Res 101:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Gibbs M, Schönrogge K, Alma A, Melika G, Quacchia A, Stone G, Aebi A (2011) Torymus sinensis: a viable management option for the biological control of Dryocosmus kuriphilus in Europe? BioControl. doi:10.1007/s10526-011-9364-8

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • González AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A (2010) Can ecological stoichiometry help explain patterns of biological invasions? Oikos 119:779–790

    Article  Google Scholar 

  • Grill CP, Juliano SA (1996) Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. J Anim Ecol 65:63–76

    Article  Google Scholar 

  • Griswold MW, Lounibos LP (2005) Does differential predation permit invasive and native mosquito larvae to coexist in Florida? Ecol Entomol 30:122–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross J, Eben A, Müller I, Wensing A (2010) A well protected intruder: the effective antimicrobial defense of the invasive ladybird Harmonia axyridis. J Chem Ecol 36:1180–1188

    Article  CAS  PubMed  Google Scholar 

  • Hails RS, Crawley MJ (1992) Spatial density dependence in populations of a Cynipid gall-former Andricus quercuscalicis. J Anim Ecol 61:567–583

    Article  Google Scholar 

  • Hails RS, Askew RR, Notton DG (1990) The parasitoids and inquilines of the agamic generation of Andricus quercuscalicis (Hym.; Cynipidae) in Britain. Entomologist 109:165–172

    Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hassell MP (1985) Insect natural enemies as regulating factors. J Anim Ecol 54:323–334

    Article  Google Scholar 

  • Hassell MP, May RM (1986) Generalist and specialist natural enemies in insect predator-prey interactions. J Anim Ecol 55:923–940

    Article  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271

    Article  PubMed  Google Scholar 

  • Hawkins BA (1992) Parasitoid-host food webs and donor control. Oikos 65:159–162

    Article  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:723–732

    Article  Google Scholar 

  • Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286

    Article  Google Scholar 

  • Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714

    Article  Google Scholar 

  • Juliano SA, Lounibos LP, Nishimura N, Greene K (2010) Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia 162:709–718

    Article  PubMed  Google Scholar 

  • Keane R, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kesavaraju B, Juliano SA (2004) Differential behavioral responses to water-borne cues to predation in two container-dwelling mosquitoes. Ann Entomol Soc Am 97:194–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama S, Majerus MEN (2008) Interactions between the parasitoid wasp Dinocampus coccinellae and two species of coccinellid from Japan and Britain. BioControl 53:253–264

    Article  Google Scholar 

  • Krebs JR, McCleery RH (1984) Optimization in behavioural ecology. In: Krebs JR, Davies NB (eds) Behavioural ecology, an evolutionary approach. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • Lawson Handley JL, Estoup A, Thomas CE, Lombaert E, Facon B, Aebi A, Evans DM, Roy HE (2011) Ecological genetics of invasive alien species. BioControl. doi:10.1007/s10526-011-9386-2

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545

    Article  Google Scholar 

  • Lively CM (2006) The ecology of virulence. Ecol Lett 9:1089–1095

    Article  PubMed  Google Scholar 

  • MacNeil C, Dick JTA, Hatcher MJ, Terry RS, Smith JE, Dunn A (2003a) Parasite-mediated predation between native and invasive amphipods. Proc R Soc Lond B 270:1309–1314

    Article  Google Scholar 

  • MacNeil C, Fielding NJ, Hulme KD, Dick JTA, Elwood RW, Hatcher MJ, Dunn AM (2003b) Parasite altered micro-distribution of Gammarus pulex (Crustacea: Amphipoda). Int J Parasitol 33:57–64

    Article  PubMed  Google Scholar 

  • Mills NJ (2005) Selecting effective parasitoids for biological control introductions: codling moth as a case study. Biol Control 34:274–282

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants and implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Murdoch WW (1966) Community structure, population control and competition—a critique. Am Nat 100:219–226

    Article  Google Scholar 

  • Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366

    Article  Google Scholar 

  • Nicholls JA, Preuss S, Hayward A, Melika G, Csoka G, Nieves-Aldrey J-L, Askew RR, Tavakoli M, Schönrogge K, Stone GN (2010a) Concordant phylogeography and cryptic speciation in two Western Palaearctic oak gall parasitoid species complexes. Mol Ecol 19:592–609

    Article  PubMed  Google Scholar 

  • Nicholls JA, Fuentes-Utrilla P, Hayward A, Melika G, Csóka G, Nieves-Aldrey J-L, Pujade-Villar J, Tavakoli M, Schönrogge K, Stone GN (2010b) Community impacts of anthropogenic disturbance: natural enemies exploit multiple routes in pursuit of invading herbivore hosts. BMC Evol Biol 10:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Reichert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320

    Article  Google Scholar 

  • Reynolds JD (1988) Crayfish extinctions and crayfish plague in central Ireland. Biol Conserv 45:279–285

    Article  Google Scholar 

  • Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204

    Article  Google Scholar 

  • Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecol Appl 9:409–417

    Article  Google Scholar 

  • Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Tech 10:737–752

    Article  Google Scholar 

  • Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of ladybird: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl 53:265–276

    Article  Google Scholar 

  • Sato H (1990) Comparison of community composition of parasitoids that attack leaf-mining moths (Lepidoptera: Gracillariidae). Environ Entomol 24:879–888

    Article  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471

    Article  PubMed  Google Scholar 

  • Schönrogge K, Crawley MJ (2000) Quantitative webs as a means of assessing the impact of alien insects. J Anim Ecol 69:841–868

    Article  Google Scholar 

  • Schönrogge K, Stone GN, Crawley MJ (1996) Abundance patterns and species richness of the parasitoids and inquilines of the alien gall-former Andricus quercuscalicis (Hymenoptera: Cynipidae). Oikos 77:507–518

    Article  Google Scholar 

  • Schönrogge K, Walker P, Crawley MJ (1998) Invaders on the move: parasitism in the sexual galls of four alien gall wasps in Britain (Hymenoptera: Cynipidae). Proc R Soc B 265:1643–1650

    Article  Google Scholar 

  • Schönrogge K, Walker P, Crawley MJ (2000) Parasitoid and inquiline attack in the galls of four alien, cynipid gall wasps: host switches and the effect on parasitoid sex ratios. Ecol Entomol 25:208–219

    Article  Google Scholar 

  • Schönrogge K, Napper EKV, Birkett MA, Woodcock C, Pickett JA, Thomas JA (2008) Host recognition by the specialist hoverfly Microdon mutabilis, a social parasite of the ant Formica lemani. J Chem Ecol 34:168–178

    Article  PubMed  CAS  Google Scholar 

  • Schutzenhofer MR, Knight TM (2007) Population-level effects of augmented herbivory on Lespedeza cuneata: implications for biological control. Ecol Appl 17:965–971

    Article  PubMed  Google Scholar 

  • Schutzenhofer MR, Valone TJ, Knight TM (2009) Herbivory and population dynamics of invasive and native Lespedeza. Oecologia 161:57–66

    Article  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE (2005) Susceptibility of ladybeetles (Coleoptera: Coccinellidae) to entomopathogenic nematodes. J Invertebr Pathol 89:150–156

    Article  PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sheehan W, Hawkins BA (1991) Attack strategy as an indicator of host range in metopiine and pimpline Ichneumonidae (Hymenoptera). Ecol Entomol 16:129–131

    Article  Google Scholar 

  • Shinen JS, Morgan SG, Chan AL (2009) Invasion resistance on rocky shores: direct and indirect effects of three native predators on an exotic and a native prey species. Mar Ecol Prog Ser 378:47–54

    Article  Google Scholar 

  • Slothouber Galbreath JGM, Smith JE, Becnel JJ, Butlin RK, Dunn AM (2010) Reduction in post-invasion genetic diversity in Crangonyx pseudogracilis (Amphipoda: Crustacea): a genetic bottleneck or the work of hitchhiking vertically transmitted microparasites? Biol Invasions 12:191–209

    Article  Google Scholar 

  • Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716

    Article  Google Scholar 

  • Snyder WE, Ives AR (2003) Interactions between specialist and generalist natural enemies: parasitoids, predators and pea aphid biocontrol. Ecology 84:91–107

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–122120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stastny M, Schaffner U, Elle E (2005) Do vigour of introduced populations and escape from specialist herbivores contribute to invasiveness? J Ecol 93:27–37

    Article  Google Scholar 

  • Steenberg T, Harding S (2009) Entomopathogenic fungi recorded from the harlequin ladybird, Harmonia axyridis. J Invertebr Pathol 102:88–89

    Article  PubMed  Google Scholar 

  • Strauss SY, Lau JA, Carroll SP (2006) Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol Lett 9:357–374

    Article  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tompkins DM, White AR, Boots M (2003) Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol Lett 6:189–196

    Article  Google Scholar 

  • Torchin ME, Mitchell CE (2003) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190

    Article  Google Scholar 

  • Torchin ME, Mitchell CE (2004) Parasites, pathogens, and invasions by plants and animals. Front Ecol Environ 2:183–190

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Kuris AM (2001) Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biol Invasions 3:333–345

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Kuris AM (2002) Parasites and marine invasions. Parasitology 124:S137–S151

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Van der Meijden E (1996) Plant defence, an evolutionary dilemma: contrasting effects of (specialist and generalist) herbivores and natural enemies. Entomol Exper Appl 80:307–310

    Article  Google Scholar 

  • Vermeij GJ (1982) Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299:349–350

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Walker P (2001) The developing community on the introduced oak Quercus cerris: a catkin gall-forming wasp Andricus grossulariae New to Britain. Entomol Mon Mag 137:145–147

    Google Scholar 

  • Wanger TC, Wielgoss AC, Motzke I, Clough Y, Brook BW, Sodhi NS, Tscharntke T (2010) Endemic predators, invasive prey and native diversity. Proc R Soc B 278:690–694

    Article  PubMed  PubMed Central  Google Scholar 

  • Ware RL, Majerus MEN (2008) Intraguild predation of immature stages of British and Japanese coccinellids by the invasive ladybird Harmonia axyridis. BioControl 53:169–188

    Article  Google Scholar 

  • Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, Muskó IB, Platvoet D, Rigaud T (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116:1941–1953

    Article  Google Scholar 

  • Wells PM, Baverstock J, Majerus MEN, Jiggins FM, Roy HE, Pell JK (2011) The effect of the coccinellid Harmonia axyridis on transmission and dispersal of the fungal pathogen Pandora neoaphidis. Eur J Entomol 108:87–90

    Article  Google Scholar 

  • Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711

    PubMed  Google Scholar 

  • Yang C-C, Yu Y-C, Valles SM, Oi DH, Chen Y-C, Shoemaker DW, Wu W-J, Shih C-J (2010) Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions 3:333–345

    Google Scholar 

  • Zuharah WF, Lester PJ (2010) Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats? J Vector Ecolgy 35:100–105

    Article  Google Scholar 

Download references

Acknowledgments

HER, BVP and KS are funded through the Centre for Ecology & Hydrology (Natural Environmental Research Council (NERC). HER is also funded by the Joint Nature Conservation Committee (JNCC). HER also receives funding from the Department for Environment, Food and Rural Affairs (Defra) for work on the GB Non-Native Species Information Portal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. E. Roy.

Additional information

Handling Editor: Patrick De Clercq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, H.E., Lawson Handley, LJ., Schönrogge, K. et al. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?. BioControl 56, 451–468 (2011). https://doi.org/10.1007/s10526-011-9349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9349-7

Keywords

Navigation