Skip to main content
Log in

Catabolic pathways and biotechnological applications of microbial caffeine degradation

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Catabolism of caffeine (1,3,7-trimethylxanthine) in microorganisms commences via two possible mechanisms: demethylation and oxidation. Through the demethylation route, the major metabolite formed in fungi is theophylline (1,3-dimethylxanthine), whereas theobromine (3,7-dimethylxanthine) is the major metabolite in bacteria. In certain bacterial species, caffeine has also been oxidized directly to trimethyl uric acid in a single step. The conversion of caffeine to its metabolites is primarily brought about by N-demethylases (such as caffeine demethylase, theobromine demethylase and heteroxanthinedemethylase), caffeine oxidase and xanthine oxidase that are produced by several caffeine-degrading bacterial species such as Pseudomonas putida and species within the genera Alcaligenes, Rhodococcus and Klebsiella. Development of biodecaffeination techniques using these enzymes or using whole cells offers an attractive alternative to the present existing chemical and physical methods removal of caffeine, which are costly, toxic and non-specific to caffeine. This review mainly focuses on the biochemistry of microbial caffeine degradation, presenting recent advances and the potential biotechnological application of caffeine-degrading enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams MR, Dougan J (1981) Biological management of coffee processing. Trop Sci 123:178–196

    Google Scholar 

  • Asano Y, Komeda T, Yamada H (1994) Enzymes involved in theobromine production from caffeine by a Pseudomonas putida No. 352. Biosci Biotech Biochem 58:2303–2304

    CAS  Google Scholar 

  • Asano Y, Komeda T, Yamada H (1993) Microbial production of theobromine from caffeine. Biosci Biotech Biochem 57:1286–1289

    Article  CAS  Google Scholar 

  • Ashihara H, Crozier A (2001) Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci 6:407–413

    Article  PubMed  CAS  Google Scholar 

  • Blecher R, Lingens F (1977) The metabolism of caffeine by a Pseudomonas putida strain. Hoppe–Seyler’s Z Physiol Chem 358:807–817

    PubMed  CAS  Google Scholar 

  • Bradshaw WH, Barker HA (1960) Purification and properties of xanthine dehydrogenese from Clostridium cylindrosporum. J Biol Chem 235:3620–3629

    CAS  Google Scholar 

  • Bray RC (1965) Xanthine oxidase. In: Boyer PD, Lardy H, Myrback K (eds) The enzymes. Academic Press, New York, pp 533–556

    Google Scholar 

  • Bressani R (1987) Antiphysiological factors in coffee pulp. In: Brahan JE, Bressani R (eds) Coffee pulp: composition, technology, and utilization. Institute of Nutrition of Central America and Panama, Guatemala City pp 83–88

    Google Scholar 

  • Buerge IJ, Poiger T, Muller MD, Buser HR (2003) Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol 37:691–700

    Article  PubMed  CAS  Google Scholar 

  • Cooper C, Atkinson EJ, Wahner HW, O’Fallon WM, Riggs BL, Judd HL, Melton LJ 3rd (1992) Is caffeine consumption a risk factor for osteoporosis? J Bone Miner Res 7:465–471

    Article  PubMed  CAS  Google Scholar 

  • Dash SS, Gummadi SN (2006) Biodegradation of caffeine by Pseudomonas sp. NCIM 5235. Res J Microbiol 1:115–123

    Article  CAS  Google Scholar 

  • Eggins BR (1996) Biosensors: an introduction. Wiley-Teubner Inc., New York, p 212

  • Fernandes O, Sabharwal M, Smiley T, Pastuszak A, Koren G, Einarson T (1998) Moderate to heavy caffeine consumption during pregnancy and relationship to spontaneous abortion and abnormal fetal growth: a meta-analysis. Reprod Toxicol 12:435–444

    Article  PubMed  CAS  Google Scholar 

  • Friedman J, Waller GR (1983) Caffeine hazards and their prevention in germinating seed of coffee. J Chem Ecol 9:1099–1106

    Article  CAS  Google Scholar 

  • Glassmeyer ST, Furlong ET, Kolpin DW, Cahill JD, Zaugg SD, Werner SL, Meyer MT, Kryak DD (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Glück M, Lingens F (1987) Studies on the microbial production of theobromine and heteroxanthine from caffeine. Appl Microbiol Biotechnol 25:334–340

    Article  Google Scholar 

  • Glück M, Lingens F (1988) Heteroxanthinedemethylase, a new enzyme in the degradation of caffeine by Pseudomonas putida. Appl Microbiol Biotechnol 28:59–62

    Article  Google Scholar 

  • Goering JE (1982) Xanthine derivatives and pharmaceutical compositions containing them. Eur Pat Appl EP 42,706; GB Appl. 80/20,418

  • Gokulakrishnan S, Chandraraj K, Gummadi SN (2005) Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb Technol 37:225–232

    Article  CAS  Google Scholar 

  • Hakil M, Denis S, Viniegra-González G, Augur C (1998) Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enzyme Microb Technol 22:355–359

    Article  CAS  Google Scholar 

  • Hakil M, Voisinet F, Viniegra-González G, Augur C (1999) Caffeine degradation in solid state fermentation by Aspergillus tamarii: effects of additional nitrogen sources. Process Biochem 35:103–109

    Article  CAS  Google Scholar 

  • Hohnloser W, Osswalt B, Lingens F (1980) Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1. Hoppe–seyler’s Z Physiol Chem 361:1763–1766

    PubMed  CAS  Google Scholar 

  • Hollingsworth RG, Armstrong JW, Campbell E (2002) Caffeine as a repellent for slugs and snails. Nature 417:915–916

    Article  PubMed  CAS  Google Scholar 

  • James JE (2004) Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med 66:63–71

    Article  PubMed  CAS  Google Scholar 

  • Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53:82–94

    Article  PubMed  Google Scholar 

  • Madyastha KM, Sridhar GR (1998) A novel pathway for the metabolism of caffeine by a mixed culture consortium. Biochem Biophys Res Commun 249:178–181

    Article  PubMed  CAS  Google Scholar 

  • Madyastha KM, Sridhar GR, Vadiraja BB, Madhavi YS (1999) Purification and partial characterization of caffeine oxidase-A novel enzyme from a mixed culture consortium. Biochem Biophys Res Commun 263:460–464

    Article  PubMed  CAS  Google Scholar 

  • Mazzafera P (2002) Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agricol 59:815–821

    CAS  Google Scholar 

  • Mazzafera P (2004) Catabolism of caffeine in plants and microorganism. Front Biosci 9:1348–1359

    PubMed  CAS  Google Scholar 

  • Mazzafera P, Olsson O, Sandberg G (1994) Degradation of caffeine and related methyl xanthines by Serratia marcescens isolated from soil under coffee cultivation. Microb Ecol 31:199–207

    Google Scholar 

  • Middelhoven WJ, Bakker CM (1982) Degradation of caffeine by immobilized cells of Pseudomonas putida strain C 3024. Eur J Appl Microbial Biotechnol 15:214–217

    Article  CAS  Google Scholar 

  • Mohapatra BR, Harris N, Nordin R, Mazumdar A (2006) Purification and characterization of a novel caffeine oxidase from Alcaligenes species. J Biotechnol in press

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    PubMed  CAS  Google Scholar 

  • Nathanson AJ (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A (1999) Are we dependent upon coffee and caffeine? A review on human and animal data. Neurosci Biobehav Rev 23:563–576

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) Producing decaffeinated coffee plants. Nature 423(6942):823

    Article  PubMed  CAS  Google Scholar 

  • Ogunseitan OA (1996) Removal of caffeine in sewage by Pseudomonas putida: implications for water pollution index. World J Microbiol Biotechnol 12:251–256

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR,Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162

    Article  PubMed  CAS  Google Scholar 

  • Roussos S, Aquiáhuatl MA, Trejo-Hernández MR, Perraud IG, Favela E, Ramakrishna M, Raimbault M, Viniegra-González G (1995) Biotechnological management of coffee pulp-isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl Microbiol Biotechnol 42:756–762

    Article  CAS  Google Scholar 

  • Sarath Babu VR, Patra S, Thakur MS, Karanth NG, Varadaraj MC (2005) Degradation of caffeine by Pseudomonas alcaligenes CFR 1708. Enzyme Microb Technol 37:617–624

    Article  CAS  Google Scholar 

  • Sauer M (1982) Comparison of the cytochrome P-450 containing monooxigenases originating from two different yeasts. Dev Biochem 23:452–457

    Google Scholar 

  • Sideso OFP, Marvier AC, Katerelos NA, Goodenough PW (2001) The characteristics and stabilization of a caffeine demethylase enzyme complex. Int J Food Sci Tech 36:693

    Article  CAS  Google Scholar 

  • Sin IL (1975) Purification and properties of xanthine dehydrogenese from Pseudomonas acidovorans. Biochem Biophys Acta 410:12–20

    PubMed  CAS  Google Scholar 

  • Smith A (2002) Effects of caffeine on human behavior. Food Chem Toxicol 40:1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Smith ST, Rajagopalan KV, Handler P (1967) Purification and properties of xanthine dehydrogenese from Micrococcus lacidyticus. J Biol Chem 242:4108–4117

    PubMed  CAS  Google Scholar 

  • White PA, Rasmussen JB (1998) The genotoxic hazards of domestic wastes in surface waters. Mutat Res 410:223–236

    Article  PubMed  CAS  Google Scholar 

  • Woolfolk CA (1975) Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by enrichment on caffeine as the sole source of carbon and nitrogen. J Bacteriol 123:1088–1106

    PubMed  CAS  Google Scholar 

  • Woolfolk CA, Woolfolk BS, Whiteley HR (1970) 2-oxypurine dehydrogenese from Micrococcus aerogenes. J Biol Chem 245:3167–3178

    PubMed  CAS  Google Scholar 

  • Yamaoka-Yano DM, Mazzafera P (1999) Catabolism of caffeine and purification of a xanthine oxidase responsible for methyluric acids production in Pseudomonas putida L. Rev Microbiol 30:62–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge S. Gokulakrishnan, research scholar in Biotechnology Department, IIT-Madras for his help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, S.S., Gummadi, S.N. Catabolic pathways and biotechnological applications of microbial caffeine degradation. Biotechnol Lett 28, 1993–2002 (2006). https://doi.org/10.1007/s10529-006-9196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9196-2

Keywords

Navigation