Skip to main content

Advertisement

Log in

Use of niche models in invasive species risk assessments

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Risk maps summarizing landscape suitability of novel areas for invading species can be valuable tools for preventing species’ invasions or controlling their spread, but methods employed for development of such maps remain variable and unstandardized. We discuss several considerations in development of such models, including types of distributional information that should be used, the nature of explanatory variables that should be incorporated, and caveats regarding model testing and evaluation. We highlight that, in the case of invasive species, such distributional predictions should aim to derive the best hypothesis of the potential distribution of the species by using (1) all distributional information available, including information from both the native range and other invaded regions; (2) predictors linked as directly as is feasible to the physiological requirements of the species; and (3) modelling procedures that carefully avoid overfitting to the training data. Finally, model testing and evaluation should focus on well-predicted presences, and less on efficient prediction of absences; a k-fold regional cross-validation test is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RP (2003) Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. J Biogeogr 30:591–605

    Article  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Angert AL (2009) The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. Proc Natl Acad Sci USA 106:19693–19698

    Article  PubMed  CAS  Google Scholar 

  • Aragón P, Baselga A, Lobo JM (2010) Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: integrating distribution models and physiological thresholds to assess climatic favourability. J Appl Ecol 47:1026–1035

    Article  Google Scholar 

  • Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345

    Article  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Basille M, Calenge C, Marboutin E et al (2008) Assessing habitat selection using multivariate statistics: some refinements of the ecological-niche factors analysis. Ecol Model 211:233–240

    Article  Google Scholar 

  • Bax N, Carlton JT, Mathews-Amos A et al (2001) The control of biological invasions in the world’s oceans. Conserv Biol 15:1234–1246

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W et al (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Bergmans W, Blom E (2001) Invasive plants and animals. Is there a way out? The Netherlands Committee for IUCN, Amsterdam

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H et al (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  PubMed  CAS  Google Scholar 

  • Brotons L, Thuiller W, Araújo MB et al (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Busby JR (1991) BIOCLIM: a bioclimate analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Calenge C, Basille M (2008) A general framework for the statistical exploration of the ecological niche. J Theor Biol 252:674–685, 543

    Google Scholar 

  • Calenge C, Darmon G, Basile M et al (2008) The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology 89:555–566

    Article  PubMed  CAS  Google Scholar 

  • Calosi P, Bilton DT, Spicer JI et al (2010) What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera, Dytiscidae). J Anim Ecol 79:194–204

    Article  PubMed  Google Scholar 

  • Cassey P, Blackburn TM, Sol D et al (2004) Global patterns of introduction effort and establishment success in birds. Proc R Soc Lond B Biol 271:S405–S408

    Article  Google Scholar 

  • Chase JM, Leibold M (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Google Scholar 

  • Colwell RK (1992) Niche: a bifurcation in the conceptual lineage of the term. In: Keller EF, Lloyd EA (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, pp 241–248

    Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci USA 106:19651–19658

    Article  PubMed  CAS  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Dennis RLH, Hardy PB (1999) Targeting squares for survey: predicting species richness and incidence of species for a butterfly atlas. Global Ecol Biogeogr 8:443–454

    Article  Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157:313–329

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  • Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modelling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130

    Article  CAS  Google Scholar 

  • Feinstein AR (1996) Multivariable analysis: an introduction. Yale University Press, New Haven

    Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species, the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:22–2261

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders N et al (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Ganeshaiah KN, Barve N, Nath K et al (2003) Predicting the potential geographical distribution of the sugarcane woolly aphid using GARP and DIVA-GIS. Curr Sci India 85:1526–1528

    Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Godsoe W (2010) I can’t define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:53–60

    Article  Google Scholar 

  • Gomulkiewicz R, Holt RD, Barfield M (1999) The effects of density dependence and immigration on local adaptation and niche evolution in a black-hole sink environment. Theor Popul Biol 55:283–296

    Article  PubMed  CAS  Google Scholar 

  • Gorodkov KB (1986a) Three-dimensional climatic model of potential range and some of its characteristics I. Entomol Rev 65:1–18

    Google Scholar 

  • Gorodkov KB (1986b) Three-dimensional climatic model of potential range and some of its characteristics II. Entomol Rev 65:19–35

    Google Scholar 

  • Graham CH, Ferrier S, Huettman F et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Groves RH, Di Castri F (1996) Biogeography of mediterranean invasions. Cambridge University Press, Cambridge, p 495

    Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biol Conserv 116:195–203

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121

    Article  Google Scholar 

  • Hirzel AH, Hausser J, Chessel D et al (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Article  Google Scholar 

  • Hobbs RJ, Humphries SE (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770

    Article  Google Scholar 

  • Hortal J, Lobo JM (2005) An ED-based protocol for optimal sampling of biodiversity. Biodivers Conserv 14:2013–2947

    Article  Google Scholar 

  • Hortal J, Lobo JM, Jiménez-Valverde A (2007) Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conserv Biol 21:853–863

    Article  PubMed  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez J et al (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Article  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2011) Tolerance limits, animal. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, CA, pp 661–663

    Google Scholar 

  • Jiménez-Valverde A, Ortuño V, Lobo JM (2007) Exploring the distribution of Sterocorax Ortuño, 1990 (Coleoptera, Carabidae) species in the Iberian Peninsula. J Biogeogr 34:1426–1438

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jiménez-Valverde A, Nakazawa Y, Lira-Noriega A, Peterson AT (2009) Environmental correlation structure and ecological niche model projections. Biodivers Inf 6:28–35

    Google Scholar 

  • Jiménez-Valverde A, Lira-Noriega A, Peterson AT, Soberón J (2010) Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises. Ecol Res 25:947–957

    Article  Google Scholar 

  • Jiménez-Valverde A, Decae AE, Arnedo MA (2011) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. J Biogeogr (in press)

  • Kadmon R, Oren F, Avinoam D (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 16:199–204

    Google Scholar 

  • Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191

    Article  Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate and the distribution of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney M, Porter WP, Williams C et al (2009) Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23:528–538

    Article  Google Scholar 

  • Kilroy C, Snelder TH, Floerl O et al (2007) A rapid technique for assessing the suitability of areas for invasive species to New Zealand’s rivers. Divers Distrib 14:262–272

    Article  Google Scholar 

  • Kluza DA, Vieglais DA, Andreasen JK et al (2007) Sudden oak death: geographic risk estimates and predictions of origins. Plant Pathol 56:580–587

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Lambdon PW, Lloret F, Hulme PE (2008) Do alien plants on Mediterranean islands tend to invade different niches from native species? Biol Invasions 10:703–716

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660

    Article  Google Scholar 

  • Lobo JM (2008a) Database records as a surrogate for sampling effort provide higher species richness estimations. Biodivers Conserv 17:873–881

    Article  Google Scholar 

  • Lobo JM (2008b) More complex distribution models or more representative data? Biodivers Informatics 5:14–19

    Google Scholar 

  • Lobo JM, Verdú JR, Numa C (2006) Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Divers Distrib 12:179–188

    Article  Google Scholar 

  • Lobo JM, Baselga A, Hortal J et al (2007) How does the knowledge on the spatial distribution of species increase? Divers Distrib 13:772–780

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Oxford

    Google Scholar 

  • López-Darias M, Lobo JM, Gouat P (2008) Predicting potential distributions of invasive species: the exotic Barbary ground squirrel in the Canarian archipelago and the west Mediterranean region. Biol Invasions 10:1027–1040

    Article  Google Scholar 

  • Mack RN (2004) Global plant dispersal, naturalization, and invasion: pathways, modes and circumstances. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington DC, pp 3–30

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB et al (2002) Estimating site occupancy when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • Maron JL, Vilà M, Bommarco R et al (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280

    Article  Google Scholar 

  • Mau-Crimmins TM, Schussman HR, Geiger EL (2006) Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States. Ecol Model 193:736–746

    Article  Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133497

    Article  Google Scholar 

  • Miller JR, Turner MG, Smithwick EAH et al (2004) Spatial extrapolation: the science of predicting ecological patterns and processes. Bioscience 54:310–320

    Article  Google Scholar 

  • Muñoz AR, Real R (2006) Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers Distrib 12:656–665

    Article  Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193

    Article  PubMed  Google Scholar 

  • Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506

    Article  PubMed  CAS  Google Scholar 

  • Parker IM, Simberloff D, Lonsdale WM et al (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species invasion via ecological niche modelling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2005a) Predicting potential geographic distributions of invading species. Curr Sci India 89:9

    Google Scholar 

  • Peterson AT (2005b) Kansas Gap analysis: the importance of validating distributional models before using them. Southwest Nat 50:230–236

    Article  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inf 3:59–72

    Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pulliam HR (1988) Sources, sinks and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Reese GC, Wilson KR, Hoeting JA et al (2005) Factors affecting species distribution predictions: a simulation model experiment. Ecol Appl 15:554–564

    Article  Google Scholar 

  • Richardson DM, Thuiller W (2007) Home away from home objective mapping of high-risk source areas for plant introductions. Divers Distrib 13:299–312

    Article  Google Scholar 

  • Ricklefs RE, Schluter D (1993) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago

    Google Scholar 

  • Rocchini D, Hortal J, Lengyel S, Lobo JM, Jiménez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2010) Uncertainty in species distribution mapping and the need for maps of ignorance. Progr Phys Geogr (in press)

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS ONE 4:e7843

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Trelles F, Rodríguez MA (1998) Rapid microevolution and loss of chromosomal diversity in Drosophila in response to climate warming. Evol Ecol 12:829–838

    Article  Google Scholar 

  • Rouget M, Richardson DM, Nel JL et al (2004) Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers Distrib 10:475–484

    Article  Google Scholar 

  • Royle JA, Nichols JD, Kéry M (2005) Modelling occurrence and abundance of species when detection is imperfect. Oikos 110:353–359

    Article  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  • Simberloff D, Parker IM, Windle PN (2005) Introduced species policy, management, and future research needs. Front Ecol Environ 3:12–20

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650

    Article  PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inf 2:1–10

    Google Scholar 

  • Steiner FM, Schlick-Steiner BC, VanDerWal J et al (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Divers Distrib 14:538–545

    Article  Google Scholar 

  • Stockman AK, Beamer DA, Bond JE (2006) An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Divers Distrib 12:81–89

    Article  Google Scholar 

  • Stockwell DRB, Peters D (1999) The GARP modeling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158

    Article  Google Scholar 

  • Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modeling paradigms. Biol Invasions 11:1231–1237

    Article  Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Thomas CD, Bodsworth EJ, Wilson RJ et al (2001) Ecological and evolutionary processes at expanding range margins. Nature 411:577–581

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB et al (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Pysek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250

    Article  Google Scholar 

  • Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258

    Article  Google Scholar 

  • Varela S, Rodríguez J, Lobo JM (2009) Is current climatic equilibrium a guarantee for the transferability of distribution model predictions? A case study of the spotted hyena. J Biogeogr 36:1645–1655

    Article  Google Scholar 

  • Welk E (2004) Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecol Model 179:551–567

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Williamson M (1999) Invasions. Ecography 22:5–12

    Article  Google Scholar 

  • Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Spanish MEC project CGL2004-0439/BOS, a Fundación BBVA Project, and the European Distributed Institute of Taxonomy (EDIT) project. AJ-V was supported by a MEC (Ministerio de Educación y Ciencia, Spain) postdoctoral fellowship (Ref.: EX-2007-0381) and the MEC Juan de la Cierva Program. ATP and JS were supported by a grant from Microsoft Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Valverde, A., Peterson, A.T., Soberón, J. et al. Use of niche models in invasive species risk assessments. Biol Invasions 13, 2785–2797 (2011). https://doi.org/10.1007/s10530-011-9963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-9963-4

Keywords

Navigation