Skip to main content
Log in

Distribution and diversity of aquatic protists: an evolutionary and ecological perspective

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Assessment of the distribution and diversity of free-living protists is currently hampered by a limited taxonomic resolution of major phyla and by neglecting the significance of spatial and temporal scaling for speciation. There is a tremendous physiological and ecological diversity that is hidden at the morphological level and not apparent at the level of conserved genes. A conceptual framework linking the various levels of diversity is lacking. Neutral genetic markers are useful indicators of population structure and gene flow between populations, but do not explain adaptation to local habitat conditions. The correspondence between protein-coding genes, ecophysiological performance, and fitness needs to be explored under natural conditions. The area and the associated typical temporal dimension of active cells (their ‘home range’) are much smaller, respectively shorter, than the area and time period potentially covered during passive dispersal of protist resting stages. The assumptions that dispersal rates are generally high in free-living protists and that extinction of local populations is, therefore, infinitesimally small wait rigorous testing. Gene flow may be uncoupled largely from dispersal, because local adaptation and numerical effects of residents may strongly reduce or even prevent successful invasion (immigration). The significance of clonal selection depends on the as yet unknown frequency and timing of sexual reproduction, and on the stability of the environment. The extent of local adaptation and the fitness-related ecophysiological divergence are critical for the speciation process and, hence, for defining protist species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amato A, Kooistraa WHCF, Ghiron JHL et al (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158:193–207

    Article  PubMed  CAS  Google Scholar 

  • Bachmann K (1998) Species as units of diversity: an outdated concept. Theory Biosci 117:213–230

    Google Scholar 

  • Barth D, Krenek S, Fokin SI et al (2006) Intraspecific genetic variation in Paramecium, revealed by mitochondrial COI sequences. J Eukaryot Microbiol 53:20–25

    Article  PubMed  CAS  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418

    Article  PubMed  CAS  Google Scholar 

  • Bloem J, Bär-Gilissen M-JB, Cappenberg TE (1986) Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl Environ Microbiol 52:1266–1272

    PubMed  CAS  Google Scholar 

  • Boenigk J, Stadler P, Wiedlroither A et al (2004) Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Pfandl K, Stadler P et al (2005) High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Pfandl K, Garstecki T et al (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72:5159–5164

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Jost S, Stoeck T et al (2007) Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol 9:593–602

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796

    Article  Google Scholar 

  • Boileau MG, Hebert PND, Schwartz SS (1992) Non-equilibrium gene frequency divergence: persistent founder effects in natural populations. J Evol Biol 5:25–39

    Article  Google Scholar 

  • Burt WH (1943) Territoriality and home range concepts as applied to mammals. J Mammal 24:346–352

    Article  Google Scholar 

  • Claridge MF, Dawah HA, Wilson MR (1997) Practical approaches to species concepts for living organisms. In: Claridge MF, Dawah HA, Wilson MR (eds) Species – the units of biodiversity. Chapman & Hall, London, pp 1–15

    Google Scholar 

  • Corliss JO (1996) Christian Gottfried Ehrenberg (1795−1876): glimpses into the personal life of this most exemplary early protistologist. In: Schlegel M, Hausmann K (eds) Christian Gottfried Ehrenberg-Festschrift. Leipziger Universitätsverlag, Leipzig, pp 31–46

    Google Scholar 

  • Corliss JO, Esser SC (1974) Comments on the role of the cyst in the life cycle and survival of free-living protozoa. Trans Am Micros Soc 93:578–593

    Article  CAS  Google Scholar 

  • Cornell HV, Lawton JH (1992) Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J Anim Ecol 61:1–12

    Article  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK et al (2001) Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc Natl Acad Sci USA 98:6256–6260

    Article  PubMed  CAS  Google Scholar 

  • Cronberg G, Sandgren CD (1986) A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In: Kristiansen J, Andersen RA (eds) Chrysophytes: aspects and problems. Cambridge University Press, Cambridge, pp 317–328

    Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  PubMed  Google Scholar 

  • Darling KF, Wade CM, Kroon D et al (1999) The diversity and distribution of modern planktonic foraminiferal small subunit ribosomal RNA genotypes and their potential as tracers of present and past ocean circulation. Paleoceanography 14:3–12

    Article  Google Scholar 

  • Darling KF, Wade CM, Stewart IA et al (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47

    Article  PubMed  CAS  Google Scholar 

  • De Meester L (1996) Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3:385–399

    Google Scholar 

  • De Meester L, Gómez A, Okamurac B et al (2002) The Monopolization Hypothesis and the dispersal – gene flow paradox in aquatic organisms. Acta Oecol 23:121–135

    Article  Google Scholar 

  • De Meester L, Vanoverbeke J, De Gelas K et al (2006) Genetic structure of cyclic parthenogenetic zooplankton populations – a conceptual framework. Arch Hydrobiol 167:217–244

    Article  Google Scholar 

  • Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, London, pp 129–144

    Google Scholar 

  • Dini F, Nyberg D (1999) Growth rates of marine ciliates on diverse organisms reveal ecological specializations within morphospecies. Microb Ecol 37:13–22

    Article  PubMed  Google Scholar 

  • Doerder FP, Gates MA, Eberhardt FP et al (1995) High frequency of sex and equal frequencies of mating types in natural populations of the ciliate Tetrahymena thermophila. Proc Natl Acad Sci USA 92:8715–8718

    Article  PubMed  CAS  Google Scholar 

  • Dolan JR (2005) Biogeography of aquatic microbes. Aquat Microb Ecol 41:39–48

    Article  Google Scholar 

  • Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil, with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353

    Article  PubMed  CAS  Google Scholar 

  • Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proc Natl Acad Sci USA 100:8916–8920

    PubMed  CAS  Google Scholar 

  • Feldmann S (2007) Untersuchungen zur Verbreitung von Protozoen über die Luft. Diploma Thesis, University of Cologne

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ (2004) Protist taxonomy: an ecological perspective. Phil Trans R Soc Lond B 359:599–610

    Article  Google Scholar 

  • Finlay BJ, Fenchel T (1999) Divergent perspectives on protist species richness. Protist 150:229–233

    PubMed  CAS  Google Scholar 

  • Finlay BJ, Esteban GF, Fenchel T (2004) Protist diversity is different? Protist 155:15–22

    Article  PubMed  Google Scholar 

  • Finlay BJ, Esteban GF, Brown S et al (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist 157:377–390

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (1987) Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progr Protistol 2:69–212

    Google Scholar 

  • Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (2004) Ubiquity and cosmopolitanism of protists questioned. SILnews 43:6–7

    Google Scholar 

  • Foissner W (2005) Protozoa. In: Hillel D, Hatfield JL, Rosenzweig C et al (eds) Encyclopedia of soils in the environment, vol 3. Elsevier, pp 336–347

  • Foissner W (2006) Biogeography and dispersal of microorganisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Foissner W (2007) Dispersal and biogeography of protists: recent advances. Jpn J Protozool 40:1–16

    Google Scholar 

  • Foissner W, Stoeck T, Schmidt H et al (2001) Biogeographical differences in a common soil ciliate, Gonostomum affine (Stein), as revealed by morphological and RAPD-fingerprint analysis. Acta Protozool 40:83–97

    Google Scholar 

  • Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5:1–1459

    Google Scholar 

  • Foissner W, Müller H, Weisse T (2005) The unusual, lepidosome-coated resting cyst of Meseres corlissi (Ciliophora: Oligotrichea): light and scanning electron microscopy, cytochemistry. Acta Protozool 44:201–215

    Google Scholar 

  • Freeland JR, Rimmer VK, Okamura B (2001) Genetic changes within freshwater bryozoan populations suggest temporal gene flow from statoblast banks. Limnol Oceanogr 46:1121–1129

    Article  Google Scholar 

  • Freeland JR, Noble LR, Okamura B (2000) Genetic consequences of the metapopulation biology of a facultatively sexual freshwater invertebrate. J Evol Biol 13:383–395

    Article  Google Scholar 

  • Gächter E, Weisse T (2006) Local adaptation among geographically distant clones of the cosmopolitan freshwater ciliate Meseres corlissi. I. Temperature response. Aquat Microb Ecol 45:291–300

    Article  Google Scholar 

  • Gavrilets S (2003) Perspective: models of speciation: what have we learned in 40 years? Evolution 57:2197–2215

    PubMed  Google Scholar 

  • Gavrilets S (2005) Adaptive speciation – it is not that easy: a reply to Doebeli et al. Evolution 59:696–699

    Google Scholar 

  • Gavrilets S, Li H, Vose MD (2000) Patterns of parapatric speciation. Evolution 54:1126–1134

    PubMed  CAS  Google Scholar 

  • Giller P, Hillebrand H, Berninger U-G et al (2004) Biodiversity effects on ecosystem function: emerging issues and their experimental test in aquatic communities. Oikos 104:423–436

    Article  Google Scholar 

  • Goddard MR, Godfray HCJ, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640

    Article  PubMed  CAS  Google Scholar 

  • Gregory PH, Hamilton ED, Sreeramulu T (1955) Occurrence of the green alga Gleocapsa in the air. Nature 176:1270

    Article  Google Scholar 

  • Hahn MW (2006) The microbial diversity of inland waters. Curr Opin Biotechnol 17:256–261

    Article  PubMed  CAS  Google Scholar 

  • Hairston NGj, Lampert W, Caceres CE et al (1999) Rapid evolution revealed by dormant eggs. Nature 401:446

    Article  Google Scholar 

  • Hallegraeff G, Bolch C (1992) Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J Plankton Res 14:1067–1084

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hey J (2001) Genes, categories and species. Oxford University Press, Oxford

    Google Scholar 

  • Hillebrand H, Blenckner T (2002) Regional and local impact on species diversity – from pattern to processes. Oecologia 132:479–491

    Article  Google Scholar 

  • Hillebrand H, Watermann F, Karez R et al (2001) Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126:114–124

    Article  Google Scholar 

  • Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371–409

    Article  PubMed  CAS  Google Scholar 

  • Holyoak M (2000) Effects of nutrient enrichment on predator–prey metapopulation dynamics. J Anim Ecol 69:985–997

    Article  Google Scholar 

  • Holyoak M, Lawler SP (1996) The role of dispersal in predator–prey metapopulation dynamics. J Anim Ecol 65:640–652

    Article  Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB et al (2004) A taxa–area relationship for bacteria. Nature 432:750–753

    Article  PubMed  CAS  Google Scholar 

  • Hubbel SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hughes Martiny JB, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev 4:102–112

    Article  CAS  Google Scholar 

  • Hülsmann N, Galil BS (2002) Protists – a dominant component of the ballast-transported biota. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 20–26

    Google Scholar 

  • Jackson RB, Linder CR, Lynch M et al (2002) Linking molecular insight and ecological research. Trends Ecol Evol 17:409–414

    Article  Google Scholar 

  • Jerome CA, Simon EM, Lynn DH (1996) Description of Tetrahymena empidokyrea n. sp., a new species in the Tetrahymena pyriformis sibling species complex (Ciliophora, Oligohymenophorea), and an assessment of its phylogenetic position using small-subunit rRNA sequences. Can J Zool (Rev Can Zool) 74:1989–1906

    Google Scholar 

  • Katz LA, McManus GB, Snoeyenbos-West OLO et al (2005) Reframing the ‘Everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41:55–65

    Article  Google Scholar 

  • Kim E, Wilcox L, Graham L et al (2004) Genetically distinct populations of the dinoflagellate Peridinium limbatum in neighboring Northern Wisconsin Lakes. Microb Ecol 48:521–527

    Article  PubMed  CAS  Google Scholar 

  • Koch TA, Ekelund F (2005) Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist 156:97–112

    Article  PubMed  CAS  Google Scholar 

  • Korpelainen H (1986) Competition between clones: an experimental study in a natural population of Daphnia magna. Hereditas 105:29–35

    Article  Google Scholar 

  • Kristiansen J (ed) (1996a) Biogeography of freshwater algae. Hydrobiologia 336:1–161

  • Kristiansen J (1996b) Biogeography of freshwater algae – conclusions and perspectives. Hydrobiologia 336:159–161

    Google Scholar 

  • Kristiansen J (1996c) Dispersal of freshwater algae – a review. Hydrobiologia 336:151–157

    Google Scholar 

  • Lachance M-A (2004) Here and there or everywhere. BioScience 54:884

    Article  Google Scholar 

  • Loret P, Tengs T, Villareal TA et al (2002) No differences found in ribosomal DNA sequences from physiologically diverse clones of Karenia brevis (Dinophyceae) from the Gulf of Mexico. J Plankton Res 24:735–739

    Article  CAS  Google Scholar 

  • Losos JB, Glor RE (2003) Phylogenetic comparative methods and the geography of speciation. Trends Ecol Evol 18:220–227

    Article  Google Scholar 

  • Lowe CD, Day A, Kemp SJ et al (2005) There are high levels of functional and genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol 52:250–257

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi P, Santangelo G (2004) How often does conjugation in ciliates occur? Clues from a seven-year study on marine sandy shores. Aquat Microb Ecol 36:195–200

    Article  Google Scholar 

  • Maddock A, Du Plessis MA (1999) Can species data only be appropriately used to conserve biodiversity? Biodivers Conserv 8:603–615

    Article  Google Scholar 

  • Marshall HG, Hargraves PE, Burkholder JM et al (2006) Taxonomy of Pfiesteria (Dinophyceae). Harmful Algae 5:481–496

    Article  CAS  Google Scholar 

  • Mitchell EAD, Meisterfeld R (2005) Taxonomic confusion blurs the debate on cosmopolitanism versus local endemism of free-living protists. Protist 156:263–267

    Article  PubMed  Google Scholar 

  • Modigh M, Castaldo S (2005) Effects of fixatives on ciliates as related to cell size. J Plankton Res 27:845–849

    Article  CAS  Google Scholar 

  • Montagnes DJS, Wilson D, Brooks SJ et al (2002) Cyclical behaviour of the tide-pool ciliate Strombidium oculatum. Aquat Microb Ecol 28:55–68

    Article  Google Scholar 

  • Müller H (2000) Evidence of dormancy in planktonic oligotrich ciliates. Verh Internat Verein Limnol 27:3206–3209

    Google Scholar 

  • Müller H (2002) Laboratory study of the life cycle of a freshwater strombidiid ciliate. Aquat Microb Ecol 29:189–197

    Article  Google Scholar 

  • Müller H, Foissner W, Weisse T (2006) The role of soil in the life cycle of Meseres corlissi (Ciliophora: Oligotrichea): experiments with two clonal strains from the type locality, an astatic meadow pond. Aquat Microb Ecol 42:199–208

    Article  Google Scholar 

  • Östman Ö, Kneitel JM, Chase JM (2006) Disturbance alters habitat isolation’s effect on biodiversity in aquatic microcosms. Oikos 114:360–366

    Article  Google Scholar 

  • Quispel A (1998) Lourens G. M. Baas Becking (1895–1963), inspirator for many (micro)biologists. Int Microbiol 1:69–72

    PubMed  CAS  Google Scholar 

  • Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–206

    Article  PubMed  Google Scholar 

  • Řezáčová M, Neustupa J (2007) Distribution of the genus Mallomonas (Synurophyceae) – ubiquitous dispersal in microorganisms evaluated. Protist 158:29–37

    Article  PubMed  Google Scholar 

  • Rogerson A, Detwiler A (1999) Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmos Res 51:35–44

    Article  Google Scholar 

  • Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72:4704–4712

    Article  PubMed  CAS  Google Scholar 

  • Schlegel M (2003) Phylogeny of Eukaryotes recovered with molecular data: highlights and pitfalls. Eur J Protistol 39:113–122

    Article  Google Scholar 

  • Schlegel M, Meisterfeld R (2003) The species problem in protozoa revisited. Eur J Protistol 39:349–355

    Article  Google Scholar 

  • Shurin JB (2000) Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81:3074–3086

    Article  Google Scholar 

  • Smith HG, Wilkinson DM (2007) Not all free-living microorganisms have cosmopolitan distributions––the case of Nebela (Apodera) vas Certes (Protozoa: Amoebozoa: Arcellinida). J Biogeogr 34:1822–1831

    Article  Google Scholar 

  • Snoeyenbos-West OLO, Salcedo T, McManus GB et al (2002) Insights into the diversity of choreotrich and oligotrich ciliates (Class: Spirotrichea) based on genealogical analyses of multiple loci. Int J Syst Evol Microbiol 52:1901–1913

    Article  PubMed  CAS  Google Scholar 

  • Turesson G (1922) The genotypic response of the plant species to the habitat. Hereditas 3:211–350

    Article  Google Scholar 

  • von der Heyden S, Chao EE, Vickerman K et al (2004) Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol 51:402–416

    Article  PubMed  Google Scholar 

  • von der Heyden S, Cavalier-Smith T (2005) Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55:2605–2621

    Article  PubMed  CAS  Google Scholar 

  • Vrijenhoek RC (1998) Animal clones and diversity. BioScience 48:617–628

    Article  Google Scholar 

  • Walochnik J, Hassle A, Simon K et al (1999) Isolation and identification by partial sequencing of the 18S ribosomal gene of free-living amoebae from necrotic tissue of Basiliscus plumifrons (Sauria: Iguanidae). Parasitol Res 85:601–603

    Article  PubMed  CAS  Google Scholar 

  • Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in Eastern Germany. Eur J Soil Biol 38:137–143

    Article  Google Scholar 

  • Wanner M, Xylander WER (2005) Biodiversity development of terrestrial testate amoebae – is there any succession at all? Biol Fertil Soils 41:428–438

    Article  Google Scholar 

  • Wanner M, Dunger W, Schulz H-J et al (1998) Primary immigration of soil organisms on coal mined areas in Eastern Germany. In: Pižl V, Tajovský K (eds) 4th Central European workshop on soil zoology. České Budĕjovice, pp 267–275

  • Warren PH (1996a) Dispersal and destruction in a multihabitat system: an experimental approach using protist communities. Oikos 77:317–325

    Article  Google Scholar 

  • Warren PH (1996b) The effects of between-habitat dispersal rate on protist communities and metacommunities in microcosms at two spatial scales. Oecologia 105:132–140

    Article  Google Scholar 

  • Weisse T (1991) The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J Plankton Res 13:167–185

    Article  Google Scholar 

  • Weisse T (1997) Growth and production of heterotrophic nanoflagellates in a meso-eutrophic lake. J Plankton Res 19:703–722

    Article  Google Scholar 

  • Weisse T (2004) Meseres corlissi: a rare oligotrich ciliate adapted to warm water and temporary habitats. Aquat Microb Ecol 37:75–83

    Article  Google Scholar 

  • Weisse T (2006a) Biodiversity of freshwater microorganisms – achievements, problems, and perspectives. Pol J Ecol 54:633–652

    Google Scholar 

  • Weisse T (2006b) Freshwater ciliates as ecophysiological model organisms – lessons from Daphnia, major achievements, and future perspectives. Arch Hydrobiol 167:371–402

    Article  Google Scholar 

  • Weisse T, Rammer S (2006) Pronounced ecophysiological clonal differences of two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium lacustris (Oligotrichida), challenge the morphospecies concept. J Plankton Res 27:55–63

    Google Scholar 

  • Weisse T, Scheffel U, Stadler P et al (2007) Local adaptation among geographically distant clones of the cosmopolitan freshwater ciliate Meseres corlissi. II. Response to pH. Aquat Microb Ecol 47:289–297

    Article  Google Scholar 

  • Whitfield J (2005) Biogeography: is everything everywhere? Science 310:960–961

    Article  PubMed  CAS  Google Scholar 

  • Wylezich C, Meisterfeld R, Meisterfeld S et al (2002) Phylogenetic analysis of small subunit ribosomal RNA coding regions reveal a monophyletic lineage of testate filopod amoebae (Testaceafilosea). J Euk Microbiol 49:108–118

    Article  PubMed  CAS  Google Scholar 

  • Yannarell AC, Triplett EW (2004) Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70:214–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Manfred Wanner for providing literature on dispersal and colonization of protist species. Jens Boenigk and Ulrike Scheffel commented on a draft version of this manuscript. Numerous constructive comments by Luc De Meester and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Weisse.

Additional information

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisse, T. Distribution and diversity of aquatic protists: an evolutionary and ecological perspective. Biodivers Conserv 17, 243–259 (2008). https://doi.org/10.1007/s10531-007-9249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9249-4

Keywords

Navigation