Skip to main content

Advertisement

Log in

Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Across Europe conservation actions have been implemented to mitigate the decline of pollinators in agricultural landscapes. However, recent concerns have appeared about their efficiency to promote pollinator diversity. To increase the efficiency of these interventions, one must acquire a better knowledge of the target species diversity patterns and its sources of variations at different spatial and temporal scales. This study sets out to identify the main sources of variation in wild bee assemblages at a regional scale (450 km2) in mass-flowering crops and semi-natural habitats. During three consecutive sampling years, we monitored bee diversity and its temporal and spatial turnovers. We show that an intensive agricultural landscape in western France can hold nearly 200 wild bee species at a regional scale, i.e. 20 % of the whole bee fauna known in mainland France. Wild bee diversity was 3–4 times lower in oleaginous crops than in semi-natural habitats, with a substantial number of these being social and gregarious species. Spatial and seasonal species turnover in semi-natural habitats explained 28.6 and 34.3 %, respectively, of regional species richness. Given the importance of the spatial component of the bee diversity turnover, we suggest wild bee conservation efforts should be carried out at relevant spatial scales. The spatial turnover was estimated to be steeper within 50 km2 scales. This provides an order of magnitude for the spatial extent of relevant conservation units within which one may concentrate conservation efforts in order to optimise the number of species promoted per surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiet F, Müller A, Neumeyer R (1999) Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. Centre Suisse de Cartographie de la Faune, Neuchâtel

    Google Scholar 

  • Amiet F, Herrmann M, Müller A, Neumeyer R (2001) Apidae 3: Halictus, Lasioglossum. Centre Suisse de Cartographie de la Faune, Neuchâtel

    Google Scholar 

  • Amiet F, Herrmann M, Müller A, Neumeyer R (2004) Apidae 4. Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. Centre Suisse de Cartographie de la Faune, Neuchâtel

    Google Scholar 

  • Amiet F, Herrmann M, Müller A, Neumeyer R (2007) Apidae 5. Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa. Centre Suisse de Cartographie de la Faune, Neuchâtel

    Google Scholar 

  • Amiet F, Herrmann M, Müller A, Neumeyer R (2010) Apidae 6: Andrena, Melitturga, Panurginus, Panurgus. Centre Suisse de Cartographie de la Faune, Neuchâtel

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M et al (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354. doi:10.1126/science.1127863

    Article  CAS  PubMed  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP et al (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667. doi:10.1073/pnas.1014743108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalheiro LG, Seymour CL, Veldtman R, Nicolson SW (2010) Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J Appl Ecol 47:810–820. doi:10.1111/j.1365-2664.2010.01829.x

    Article  Google Scholar 

  • Chase JM (2011) Ecological niche theory. the theory of ecology. University of Chicago Press, Chicago, p 416

    Google Scholar 

  • Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. doi:10.1111/j.1461-0248.2003.00566.x

    Article  Google Scholar 

  • Colwell RK (2013) Estimates: statistical estimation of species richness and shared species from samples. Divers Distrib 14:1–10

    Google Scholar 

  • Crist TO, Veech JA (2006) Additive partitioning of rarefaction curves and species–area relationships: unifying α-, β- and γ-diversity with sample size and habitat area. Ecol Lett 9:923–932. doi:10.1111/j.1461-0248.2006.00941.x

    Article  PubMed  Google Scholar 

  • Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: A hierarchical analysis of α, β, and γ diversity. Am Nat 162:734–743

    Article  PubMed  Google Scholar 

  • Dengler J (2009) Which function describes the species–area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744. doi:10.1111/j.1365-2699.2008.02038.x

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Dicks LV, Showler DA, Sutherland WJ (2010) Bee conservation: Evidence for the effects of interventions, exeter. Pegasus Publishing, Cambridge

    Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4:129–138. doi:10.1078/1439-1791-00140

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499. doi:10.1046/j.1523-1739.2003.01465.x

    Article  Google Scholar 

  • Goulson D, Lepais O, O’Connor S et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215. doi:10.1111/j.1365-2664.2010.01872.x

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596. doi:10.1007/s00442-007-0752-9

    Article  PubMed  Google Scholar 

  • Hoehn P, Steffan-Dewenter I, Tscharntke T (2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodivers Conserv 19:2189–2200. doi:10.1007/s10531-010-9831-z

    Article  Google Scholar 

  • Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172:477–484. doi:10.1007/s00442-012-2515-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Jauker F, Peter F, Wolters V, Diekötter T (2012) Early reproductive benefits of mass-flowering crops to the solitary bee Osmia rufa outbalance post-flowering disadvantages. Basic Appl Ecol 13:268–276. doi:10.1016/j.baae.2012.03.010

    Article  Google Scholar 

  • Jauker B, Krauss J, Jauker F, Steffan-Dewenter I (2013) Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecol 28:107–120. doi:10.1007/s10980-012-9820-6

    Article  Google Scholar 

  • Kirk WDJ, Howes FN (2012) Plants for bees: a guide to the plants that benefit the bees of the british isles. IBRA, p 280

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969. doi:10.1111/j.1365-2664.2003.00868.x

    Article  Google Scholar 

  • Kleijn D, Berendse F, Smit R, Gilissen N (2001) Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 413:723–725. doi:10.1038/35099540

    Article  CAS  PubMed  Google Scholar 

  • Knop E, Kleijn D, Herzog F, Schmid B (2006) Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. J Appl Ecol 43:120–127. doi:10.1111/j.1365-2664.2005.01113.x

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13. doi:10.2307/3545743

    Article  Google Scholar 

  • Le Féon V, Schermann-Legionnet A, Delettre Y et al (2010) Intensification of agriculture, landscape composition and wild bee communities: a large scale study in four European countries. Agric Ecosyst Environ 137:143–150. doi:10.1016/j.agee.2010.01.015

    Article  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Kuhlmann et al M (2013) Checklist of the western palaearctic bees (Hymenoptera: Apoidea: Anthophila). http://westpalbees.myspecies.info/. Accessed 10 Sep 2013

  • Magurran AE (2004) Measuring biological diversity. Blackwell Pub, Malden

    Google Scholar 

  • Michener CD (2007) The Bees of the World, 2nd Revised Edition. Johns Hopkins University Press, Hopkins

    Google Scholar 

  • Müller J, Goßner MM (2010) Three-dimensional partitioning of diversity informs state-wide strategies for the conservation of saproxylic beetles. Biol Conserv 143:625–633. doi:10.1016/j.biocon.2009.11.027

    Article  Google Scholar 

  • Munyuli MBT, Nyeko P, Potts S et al (2013) Patterns of bee diversity in mosaic agricultural landscapes of central Uganda: implication of pollination services conservation for food security. J Insect Conserv 17:79–93. doi:10.1007/s10841-012-9488-x

    Article  Google Scholar 

  • New TR (1999) Limits to species focusing in insect conservation. Ann Entomol Soc Am 92:853–860

    Article  Google Scholar 

  • Öckinger E, Smith HG (2007) Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J Appl Ecol 44:50–59. doi:10.1111/j.1365-2664.2006.01250.x

    Article  Google Scholar 

  • Oertli S, Mueller A, Dorn S (2005) Ecological and seasonal patterns in the diversity of a species-rich bee assemblage (Hymenoptera: Apoidea: Apiformes). Euro J Entomol 102:53–63

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al (2011) Vegan: community ecology package. Blackwell Publishing, Oxford

    Google Scholar 

  • Palmer MW (1995) How should one count species? Natural Areas Journal 15:124–135

    Google Scholar 

  • Potts SG, Vulliamy B, Dafni A et al (2003) Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84:2628–2642

    Article  Google Scholar 

  • Potts SG, Vulliamy B, Roberts S et al (2005) Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. Ecological Entomol 30:78–85. doi:10.1111/j.0307-6946.2005.00662.x

    Article  Google Scholar 

  • Potts S, Roberts S, Dean R et al (2010a) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49:15. doi:10.3896/IBRA.1.49.1.02

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010b) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Pouvreau A (2004) Les insectes pollinisateurs. Delachaux et Niestlé, Paris

    Google Scholar 

  • Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35:298–302. doi:10.2307/3544643

    Article  Google Scholar 

  • Rollin O, Bretagnolle V, Decourtye A et al (2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agric Ecosyst Environ 179:78–86. doi:10.1016/j.agee.2013.07.007

    Article  Google Scholar 

  • Roubik DW (2001) Ups and downs in pollinator populations: When is there a decline? Conserv Ecol 5. URL: http://www.ecologyandsociety.org/vol5/iss1/art2/

  • Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12:441–447. doi:10.1046/j.1466-822X.2003.00061.x

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2001) Succession of bee communities on fallows. Ecography 24:83–93. doi:10.1034/j.1600-0587.2001.240110.x

    Article  Google Scholar 

  • Summerville KS, Crist TO (2005) Temporal patterns of species accumulation in a survey of Lepidoptera in a beech-maple forest. Biodivers Conserv 14:3393–3406. doi:10.1007/s10531-004-0546-x

    Article  Google Scholar 

  • Tylianakis JM, Klein A-M, Tscharntke T (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86:3296–3302. doi:10.1890/05-0371

    Article  Google Scholar 

  • VanEngelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3:e4071. doi:10.1371/journal.pone.0004071

    Article  PubMed Central  Google Scholar 

  • Walther BA, Morand S (1998) Comparative performance of species richness estimation methods. Parasitology 116:395–405

    Article  PubMed  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett 6:961–965. doi:10.1046/j.1461-0248.2003.00523.x

    Article  Google Scholar 

  • Westphal C, Bommarco R, Carré G et al (2008) Measuring bee diversity in different european habitats and biogeographical regions. Ecol Monogr 78:653–671. doi:10.1890/07-1292.1

    Article  Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden-Württemburgs: Spezieller Teil—Die Gattungen und Arten. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Williams NM, Minckley RL, Silveira FA (2001) Variation in native bee faunas and its implications for detecting community changes. Conserv Ecol 5. URL: http://www.consecol.org/vol5/iss1/art7/

  • Zurbuchen A, Cheesman S, Klaiber J et al (2010a) Long foraging distances impose high costs on offspring production in solitary bees. J Anim Ecol 79:674–681. doi:10.1111/j.1365-2656.2010.01675.x

    Article  PubMed  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J et al (2010b) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676. doi:10.1016/j.biocon.2009.12.003

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to J. Knapp and J. Osborne for thorough text correction and improvement. B. Vaissière provided expert support at all stages of the study, including the design and conception of the survey and the management of specimen collection and identification. We are also grateful to J. Aptel, M. Chabirand, A. Haefflinger, C. Maffre and C. Toulet for field assistance; H. Dathe, E. Dufrêne, R. Fonfria, D. Genoud, M. Kuhlmann, G. Le Goff, D. Michez, A. Pauly, S. Risch for bee identification to specie level; F. Herzog, D. Michez and I. Dajoz for helpful comments on earlier versions of the manuscript. We also thank the farmers of the study area for allowing us to carry out surveys in their fields. This work was funded by the French Ministry of Agriculture (POLINOV, CASDAR Program no 9035) and an ANRT CIFRE Ph.D. grant allocated to OR. This paper is dedicated in memoriam of Robert Fonfria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orianne Rollin.

Additional information

Communicated by Jens Wolfgang Dauber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollin, O., Bretagnolle, V., Fortel, L. et al. Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodivers Conserv 24, 1195–1214 (2015). https://doi.org/10.1007/s10531-014-0852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0852-x

Keywords

Navigation