Skip to main content
Log in

Power plays: iron transport and energy transduction in pathogenic vibrios

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The Vibrios are a unique group of bacteria inhabiting a vast array of aquatic environments. Many Vibrio species are capable of infecting a wide assortment of hosts. Some of these species include V. parahaemolyticus, V. alginolyticus, V. vulnificus, V. anguillarum, and V. cholerae. The ability of these organisms to utilize iron is essential in establishing both an infection in their hosts as well as surviving in the environment. Bacteria are able to sequester iron through the secretion of low molecular weight iron chelators termed siderophores. The iron-siderophore complexes are bound by specific outer membrane receptors and are brought through both the outer and inner membranes of the cell. The energy needed to drive this active transport is achieved through the TonB energy transduction system. When first elucidated in E. coli, the TonB system was shown to be a three protein complex consisting of TonB, ExbB and ExbD. Most Vibrio species carry two TonB systems. The second TonB system includes a fourth protein; TtpC, which is essential for TonB2 mediated iron transport. Some Vibrio species have been shown to carry a third TonB system that also includes a TtpC protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Actis LA, Tolmasky ME, Crosa JH (1999) Bacterial plasmids: replication of extrachromosomal genetic elements encoding resistance to antimicrobial compounds. Front Biosci 4:D43–D62

    Article  PubMed  CAS  Google Scholar 

  • Ahmer BM, Thomas MG, Larsen RA, Postle K (1995) Characterization of the exbBD operon of Escherichia coli and the role of ExbB and ExbD in TonB function and stability. J Bacteriol 177:4742–4747

    PubMed  CAS  Google Scholar 

  • Alice AF, Naka H, Crosa JH (2008) Global gene expression as a function of the iron status of the bacterial cell: influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus. Infect Immun 76:4019–4037

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124

    Article  PubMed  CAS  Google Scholar 

  • Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Morinigo MA, Borrego JJ (1998) Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol 64:4269–4275

    PubMed  CAS  Google Scholar 

  • Barbieri E, Falzano L, Fiorentini C, Pianetti A, Baffone W, Fabbri A, Matarrese P, Casiere A, Katouli M, Kuhn I, Mollby R, Bruscolini F, Donelli G (1999) Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic coast. Appl Environ Microbiol 65:2748–2753

    PubMed  CAS  Google Scholar 

  • Braun V (1995) Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor. Proteins FEMS Microbiol Rev 16:295–307

    Article  CAS  Google Scholar 

  • Bullen JJ, Rogers HJ, Griffiths E (1978) Role of iron in bacterial infection. Curr Top Microbiol Immunol 80:1–35

    PubMed  CAS  Google Scholar 

  • Cavallo RA, Stabili L (2002) Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res 36:3719–3726

    Article  PubMed  CAS  Google Scholar 

  • Chan KY, Woo ML, Lam LY, French GL (1989) Vibrio parahaemolyticus and other halophilic vibrios associated with seafood in Hong Kong. J Appl Bacteriol 66:57–64

    PubMed  CAS  Google Scholar 

  • Crosa JH (1980) A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature 284:566–568

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH (1984) The relationship of plasmid-mediated iron transport and bacterial virulence. Ann Rev Microbiol 38:69–89

    Article  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530

    PubMed  CAS  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    PubMed  CAS  Google Scholar 

  • Crosa JH, Hodges LL, Schiewe MH (1980) Curing of a plasmid is correlated with an attenuation of virulence in the marine fish pathogen Vibrio anguillarum. Infect Immun 27:897–902

    PubMed  CAS  Google Scholar 

  • Crosa JH, Mey AR, Shelly MPayne (2004) Iron transport in bacteria. ASM Press, Washington, DC

    Google Scholar 

  • Daniels NA, MacKinnon L, Bishop R, Altekruse S, Ray B, Hammond RM, Thompson S, Wilson S, Bean NH, Griffin PM, Slutsker L (2000) Vibrio parahaemolyticus infections in the United States, 1973–1998. J Infect Dis 181:1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Faruque SMBN (2008) Vibrio cholerae: genomics and molecular biology. Caister Academic Press, Norwich, UK

    Google Scholar 

  • Fischer E, Gunter K, Braun V (1989) Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exbB mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J Bacteriol 171:5127–5134

    PubMed  CAS  Google Scholar 

  • Griffiths GL, Sigel SP, Payne SM, Neilands JB (1984) Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem 259:383–385

    PubMed  CAS  Google Scholar 

  • Gulig PA, Bourdage KL, Starks AM (2005) Molecular pathogenesis of Vibrio vulnificus. J Microbiol 43:118–131

    PubMed  CAS  Google Scholar 

  • Hantke K, Braun V (1975) Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett 49:301–305

    Article  PubMed  CAS  Google Scholar 

  • Harbell S, Hodgins O, Schiewe M (1979) Studies on the pathogenesis of vibriosis in coho salmon Oncorhynchus kisutch. J Fish Dis 2:391–404

    Article  CAS  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  PubMed  CAS  Google Scholar 

  • Henderson DP, Payne SM (1994) Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun 62(11):5120–5125

    PubMed  CAS  Google Scholar 

  • Hickman FW, Farmer JJ 3rd, Hollis DG, Fanning GR, Steigerwalt AG, Weaver RE, Brenner DJ (1982) Identification of Vibrio hollisae sp. nov. from patients with diarrhea. J Clin Microbiol 15:395–401

    PubMed  CAS  Google Scholar 

  • Hlady WG, Mullen RC, Hopkin RS (1993) Vibrio vulnificus from raw oysters. Leading cause of reported deaths from foodborne illness in Florida. J Fla Med Assoc 80:536–538

    PubMed  CAS  Google Scholar 

  • Hor LI, Chang YK, Chang CC, Lei HY, Ou JT (2000) Mechanism of high susceptibility of iron-overloaded mouse to Vibrio vulnificus infection. Microbiol Immunol 44:871–878

    PubMed  CAS  Google Scholar 

  • Hornick RB, Music SI, Wenzel R, Cash R, Libonati JP, Snyder MJ, Woodward TE (1971) The broad street pump revisited: response of volunteers to ingested cholera vibrios. Bull N Y Acad Med 47:1181–1191

    PubMed  CAS  Google Scholar 

  • Janda JM, Powers C, Bryant RG, Abbott SL (1988) Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1:245–267

    PubMed  CAS  Google Scholar 

  • Joseph SW, Colwell RR, Kaper JB (1982) Vibrio parahaemolyticus and related halophilic Vibrios. Crit Rev Microbiol 10:77–124

    Article  PubMed  CAS  Google Scholar 

  • Koster WL, Actis LA, Waldbeser LS, Tolmasky ME, Crosa JH (1991) Molecular characterization of the iron transport system mediated by the pJM1 plasmid in Vibrio anguillarum 775. J Biol Chem 266:23829–23833

    PubMed  CAS  Google Scholar 

  • Kuehl CJ, Crosa JH (2010) The TonB energy transduction systems in Vibrio species. Future Microbiol 5:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Larsen RA, Letain TE, Postle K (2003) In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli. Mol Microbiol 49:211–218

    Article  PubMed  CAS  Google Scholar 

  • Letain TE, Postle K (1997) TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Mol Microbiol 24:271–283

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749

    Article  PubMed  CAS  Google Scholar 

  • Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759

    Article  PubMed  CAS  Google Scholar 

  • Matte GR, Matte MH, Sato MI, Sanchez PS, Rivera IG, Martins MT (1994) Potentially pathogenic vibrios associated with mussels from a tropical region on the Atlantic coast of Brazil. J Appl Bacteriol 77:281–287

    PubMed  CAS  Google Scholar 

  • Ollis AA, Manning M, Held KG, Postle K (2009) Cytoplasmic membrane proton motive force energizes periplasmic interactions between ExbD and TonB. Mol Microbiol 73:466–481

    Article  PubMed  CAS  Google Scholar 

  • Ray KJRaCG (2003) Sherris medical microbiology: an introduction to infectious diseases. McGraw-Hill Medical, New York

    Google Scholar 

  • Sakazaki R (1968) Proposal of Vibrio alginolyticus for the biotype 2 of Vibrio parahaemolyticus. Jpn J Med Sci Biol 21:359–362

    PubMed  CAS  Google Scholar 

  • Schmidt U, Chmel H, Cobbs C (1979) Vibrio alginolyticus infections in humans. J Clin Microbiol 10:666–668

    PubMed  CAS  Google Scholar 

  • Seliger SS, Mey AR, Valle AM, Payne SM (2001) The two TonB systems of Vibrio cholerae: redundant and specific functions. Mol Microbiol 39:801–812

    Article  PubMed  CAS  Google Scholar 

  • Stork M, Di Lorenzo M, Mourino S, Osorio CR, Lemos ML, Crosa JH (2004) Two tonB systems function in iron transport in Vibrio anguillarum, but only one is essential for virulence. Infect Immun 72:7326–7329

    Article  PubMed  CAS  Google Scholar 

  • Stork M, Otto BR, Crosa JH (2007) A novel protein, TtpC, is a required component of the TonB2 complex for specific iron transport in the pathogens Vibrio anguillarum and Vibrio cholerae. J Bacteriol 189:1803–1815

    Article  PubMed  CAS  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431

    Article  PubMed  CAS  Google Scholar 

  • Thompson FL, Austin B, Swings J (2006) The biology of vibrios. ASM Press, Washington, DC

    Google Scholar 

  • Tolmasky ME, Actis LA, Crosa JH (1988) Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJM1: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. J Bacteriol 170:1913–1919

    PubMed  CAS  Google Scholar 

  • Wachsmuth IK, Blake PA, Olsvik O (1994) Vibrio cholerae and cholera: molecular to global perspectives. ASM Press, Washington, DC

    Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Liu Q, Cao X, Yang M, Zhang Y (2008) Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: their roles in iron utilization and virulence. Arch Microbiol 190:595–603

    Article  PubMed  CAS  Google Scholar 

  • Wolf MK, Crosa JH (1986) Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J Gen Microbiol 132:2949–2952

    PubMed  CAS  Google Scholar 

  • Wong HC, Liu CC, Yu CM, Lee YS (1996) Utilization of iron sources and its possible roles in the pathogenesis of Vibrio parahaemolyticus. Microbiol Immunol 40:791–798

    PubMed  CAS  Google Scholar 

  • Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20:405–416

    Article  PubMed  CAS  Google Scholar 

  • Xie ZY, Hu CQ, Chen C, Zhang LP, Ren CH (2005) Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol 41:202–207

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Okujo N, Yoshida T, Matsuura S, Shinoda S (1994) Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J Biochem 115:868–874

    PubMed  CAS  Google Scholar 

  • Zen-Yoji H, Le Clair RA, Ota K, Montague TS (1973) Comparison of Vibrio parahaemolyticus cultures isolated in the United States with those isolated in Japan. J Infect Dis 127:237–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research from our laboratory presented in this review was funded by NIH Grants 5RO1-AI 019018 and 5RO1-AI 065981 to JHC. Ryan J. Kustusch was supported by a postdoctoral fellowship training grant and Carole J Kuehl by a graduate student training grant both from the NIH 5T32-AI 007472-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Kustusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustusch, R.J., Kuehl, C.J. & Crosa, J.H. Power plays: iron transport and energy transduction in pathogenic vibrios. Biometals 24, 559–566 (2011). https://doi.org/10.1007/s10534-011-9437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9437-2

Keywords

Navigation