Skip to main content
Log in

An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The current state-of-art in 3D microfluidic chemotaxis device (μFCD) is limited by the inherent coupling of the fluid flow and chemical concentration gradients. Here, we present an agarose-based 3D μFCD that decouples these two important parameters, in that the flow control channels are separated from the cell compartment by an agarose gel wall. This decoupling is enabled by the transport property of the agarose gel, which—in contrast to the conventional microfabrication material such as polydimethylsiloxane (PDMS)—provides an adequate physical barrier for convective fluid flow while at the same time readily allowing protein diffusion. We demonstrate that in this device, a gradient can be pre-established in an agarose layer above the cell compartment (a gradient buffer) before adding the 3D cell-containing matrix, and the dextran (10 kDa) concentration gradients can be re-established within 10 min across the cell-containing matrix and remain stable indefinitely. We successfully quantified the chemotactic response of murine dendritic cells to a gradient of CCL19, an 8.8 kDa lymphoid chemokine, within a type I collagen matrix. This model system is easy to set up, highly reproducible, and will benefit research on 3D chemoinvasion studies, for example with cancer cells or immune cells. Because of its gradient buffering capacity, it is particularly suitable for studying rapidly migrating cells like mature dendritic cells and neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • V.V. Abhyankar, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3), 389–393 (2006). doi:10.1039/b514133h

    Article  Google Scholar 

  • V.V. Abhyankar, M.W. Toepke, C.L. Cortesio, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9), 1507–1515 (2008). doi:10.1039/b803533d

    Article  Google Scholar 

  • J. Behnsen, P. Narang, M. Hasenberg, F. Gunzer, U. Bilitewski, N. Klippel, M. Rohde, M. Brock, A.A. Brakhage, M. Gunzer, Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans. PLoS Pathog 3(2), e13 (2007). doi:10.1371/journal.ppat.0030013

    Article  Google Scholar 

  • S. Boyden, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962). doi:10.1084/jem.115.3.453

    Article  Google Scholar 

  • S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007). doi:10.1039/b618463d

    Article  Google Scholar 

  • E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001). doi:10.1126/science.1064829

    Article  Google Scholar 

  • J. Diao, L. Young, S. Kim, E.A. Fogarty, S.M. Heilman, P. Zhou, M.L. Shuler, M. Wu, M.P. DeLisa, A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6(3), 381–388 (2006). doi:10.1039/b511958h

    Article  Google Scholar 

  • C.W. Frevert, G. Boggy, T.M. Keenan, A. Folch, Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip 6(7), 849–856 (2006). doi:10.1039/b515560f

    Article  Google Scholar 

  • P. Friedl, K. Maaser, C.E. Klein, B. Niggemann, G. Krohne, K.S. Zanker, Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 57(10), 2061–2070 (1997)

    Google Scholar 

  • L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3), 211–224 (2006). doi:10.1038/nrm1858

    Article  Google Scholar 

  • M. Gunzer, E. Kampgen, E.B. Brocker, K.S. Zanker, P. Friedl, Migration of dendritic cells in 3D-collagen lattices. Visualisation of dynamic interactions with the substratum and the distribution of surface structures via a novel confocal reflection imaging technique. Adv. Exp. Med. Biol. 417, 97–103 (1997)

    Google Scholar 

  • M. Gunzer, P. Friedl, B. Niggemann, E.B. Broker, E. Kampgen, K.S. Zanker, Migration of dendritic cells within 3-D collagen lattices is dependent on tissue origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J. Leukoc. Biol. 67(5), 622–629 (2000).

    Google Scholar 

  • K. Inaba, M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, R.M. Steinman, Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176(6), 1693–1702 (1992). doi:10.1084/jem.176.6.1693

    Article  Google Scholar 

  • D. Irimia, S.Y. Liu, W.G. Tharp, A. Samadani, M. Toner, M.C. Poznansky, Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6(2), 191–198 (2006). doi:10.1039/b511877h

    Article  Google Scholar 

  • D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7(12), 1783–1790 (2007). doi:10.1039/b710524j

    Article  Google Scholar 

  • X. Jiang, Q. Xu, S.K. Dertinger, A.D. Stroock, T.M. Fu, G.M. Whitesides, A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal. Chem. 77(8), 2338–2347 (2005). doi:10.1021/ac048440m

    Article  Google Scholar 

  • L. Lebrun, G.A. Junter, Diffusion of sucrose and dextran through agar gel membranes. Enzyme Microb. Technol. 15(12), 1057–1062 (1993). doi:10.1016/0141-0229(93)90054-6

    Article  Google Scholar 

  • N. Li Jeon, H. Baskaran, S.K. Dertinger, G.M. Whitesides, L. Van de Water, M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8), 826–830 (2002)

    Google Scholar 

  • B. Mosadegh, C. Huang, J.W. Park, H.S. Shin, B.G. Chung, S.K. Hwang, K.H. Lee, H.J. Kim, J. Brody, N.L. Jeon, Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22), 10910–10912 (2007). doi:10.1021/la7026835

    Article  Google Scholar 

  • D.D. Patel, W. Koopmann, T. Imai, L.P. Whichard, O. Yoshie, M.S. Krangel, Chemokines have diverse abilities to form solid phase gradients. Clin. Immunol. 99(1), 43–52 (2001). doi:10.1006/clim.2000.4997

    Article  Google Scholar 

  • J.A. Pedersen, M.A. Swartz, Mechanobiology in the third dimension. Ann. Biomed. Eng. 33(11), 1469–1490 (2005). doi:10.1007/s10439-005-8159-4

    Article  Google Scholar 

  • J.A. Pedersen, F. Boschetti, M.A. Swartz, Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J. Biomech. 40(7), 1484–1492 (2007). doi:10.1016/j.jbiomech.2006.06.023

    Article  Google Scholar 

  • C.E. Semino, R.D. Kamm, D.A. Lauffenburger, Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp. Cell Res. 312(3), 289–298 (2006)

    Google Scholar 

  • A. Shamloo, N. Ma, M.M. Poo, L.L. Sohn, S.C. Heilshorn, Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8), 1292–1299 (2008). doi:10.1039/b719788h

    Article  Google Scholar 

  • J.D. Shields, M.E. Fleury, C. Yong, A.A. Tomei, G.J. Randolph, M.A. Swartz, Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6), 526–538 (2007). doi:10.1016/j.ccr.2007.04.020

    Article  Google Scholar 

  • K. Sun, Z. Wang, X. Jiang, Modular microfluidics for gradient generation. Lab Chip, 2008

  • V. Vickerman, J. Blundo, S. Chung, R. Kamm, Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9), 1468–1477 (2008). doi:10.1039/b802395f

    Article  Google Scholar 

  • K. Wolf, P. Friedl, Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis, 2008

  • K. Wolf, Y.I. Wu, Y. Liu, J. Geiger, E. Tam, C. Overall, M.S. Stack, P. Friedl, Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9(8), 893–904 (2007). doi:10.1038/ncb1616

    Article  Google Scholar 

  • M.H. Zaman, L.M. Trapani, A. Siemeski, D. Mackellar, H. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103(29), 10889–10894 (2006). doi:10.1073/pnas.0604460103

    Article  Google Scholar 

  • S.H. Zigmond, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75(2 Pt 1), 606–616 (1977). doi:10.1083/jcb.75.2.606

    Article  Google Scholar 

Download references

Acknowledgments

MW would like to thank all members of the Swartz lab during her half year visit there, MW and YK acknowledge the very helpful technical support from Andrew Darling and Nak Won Choi. MW and YK were supported by funds from the National Science Foundation (CBET-0619626) and by grants from the Nanobiotechnology Center (NBTC), an STC Program of the National Science Foundation under Agreement No. ECS-9876771. MAS and UH were supported by the Swiss National Science Foundation (107602 and 310010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Wu.

Additional information

Ulrike Haessler and Yevgeniy Kalinin have equal contribution.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

SM1

Movie of murine dentritic cells migrating in a 3D collagen matrix in the absence of a chemokine gradient. Two hours total were recorded. The scale bar, 50 μm. (AVI 91259 kb)

SM2

Movie of murine dentritic cells migrating in a 3D collagen matrix and in the presence of a CCL19 chemokine gradient of 0.11 nM/μm. Two hours total were recorded. The scale bar, 50 μm. (AVI 92026 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haessler, U., Kalinin, Y., Swartz, M.A. et al. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed Microdevices 11, 827–835 (2009). https://doi.org/10.1007/s10544-009-9299-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9299-3

Keyword

Navigation