Skip to main content
Log in

Microfluidics and cancer: are we there yet?

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

More than two decades ago, microfluidics began to show its impact in biological research. Since then, the field of microfluidics has evolving rapidly. Cancer is one of the leading causes of death worldwide. Microfluidics holds great promise in cancer diagnosis and also serves as an emerging tool for understanding cancer biology. Microfluidics can be valuable for cancer investigation due to its high sensitivity, high throughput, less material-consumption, low cost, and enhanced spatio-temporal control. The physical laws on microscale offer an advantage enabling the control of physics, biology, chemistry and physiology at cellular level. Furthermore, microfluidic based platforms are portable and can be easily designed for point-of-care diagnostics. Developing and applying the state of the art microfluidic technologies to address the unmet challenges in cancer can expand the horizons of not only fundamental biology but also the management of disease and patient care. Despite the various microfluidic technologies available in the field, few have been tested clinically, which can be attributed to the various challenges existing in bridging the gap between the emerging technology and real world applications. We present a review of role of microlfuidcs in cancer research, including the history, recent advances and future directions to explore where the field stand currently in addressing complex clinical challenges and future of it. This review identifies four critical areas in cancer research, in which microfluidics can change the current paradigm. These include cancer cell isolation, molecular diagnostics, tumor biology and high-throughput screening for therapeutics. In addition, some of our lab’s current research is presented in the corresponding sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • F. Alexis, J.W. Rhee, J.P. Richie, A.F. Radovic-Moreno, R. Langer, O.C. Farokhzad, New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26(1), 74–85 (2008)

    Article  Google Scholar 

  • W.J. Allard, Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)

    Article  Google Scholar 

  • P.A. Auroux et al., Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74(12), 2637–2652 (2002)

    Article  Google Scholar 

  • P.A. Baeuerle, O. Gires, EpCAM (CD326) finding its role in cancer. Br. J. Cancer 96(3), 417–423 (2007)

    Article  Google Scholar 

  • E. Brouzes et al., Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. U. S. A. 106(34), 14195–14200 (2009)

    Article  Google Scholar 

  • S.D. Chan et al., Cytometric analysis of protein expression and apoptosis in human primary cells with a novel microfluidic chip-based system. Cytom. A 55(2), 119–125 (2003)

    Article  Google Scholar 

  • K.C. Chaw et al., A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel. Microvasc. Res. 72(3), 153–160 (2006)

    Article  Google Scholar 

  • K.C. Chaw et al., Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7(8), 1041–1047 (2007)

    Article  Google Scholar 

  • C. Chen et al., Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4), 505–511 (2010)

    Article  MathSciNet  Google Scholar 

  • C.L. Chen et al., Separation and detection of rare cells in a microfluidic disk via negative selection. Lab Chip 11(3), 474–483 (2011)

    Article  Google Scholar 

  • J. Cheng et al., Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal. Chem. 70(11), 2321–2326 (1998)

    Article  Google Scholar 

  • D.T. Chiu et al., Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. U. S. A. 97(6), 2408–2413 (2000)

    Article  Google Scholar 

  • S. Chung et al., Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2), 269–275 (2009)

    Article  Google Scholar 

  • J. den Toonder, Circulating tumor cells: the grand challenge. Lab Chip 11(3), 375–377 (2011)

    Article  Google Scholar 

  • J. DeRisi, P.S. Meltzer, L. Penland, P.O. Brown (Group 1); M.L. Bittner, M. Ray, Y. Chen, Y.A. Su, J.M. Trent (Group 2). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460 (1996)

    Article  Google Scholar 

  • U. Dharmasiri et al., Highly efficient capture and enumeration of low abundance prostate cancer cells using prostate-specific membrane antigen aptamers immobilized to a polymeric microfluidic device. Electrophoresis 30(18), 3289–3300 (2009)

    Article  Google Scholar 

  • U. Dharmasiri et al., High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal. Chem. 83(6), 2301–2309 (2011)

    Article  Google Scholar 

  • D. Di Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab Chip 6(11), 1445–1449 (2006)

    Article  Google Scholar 

  • F. Diehl et al., Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14(9), 985–990 (2008)

    Article  Google Scholar 

  • M. Domenech et al., Cellular observations enabled by microculture: paracrine signaling and population demographics. Integr. Biol. (Camb.) 1(3), 267–274 (2009)

    Article  Google Scholar 

  • M. Domenech et al., Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth. Integr. Biol. (Camb.) 4(2), 142–152 (2012)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442(7101), 403–411 (2006)

    Article  Google Scholar 

  • A. Esquela-Kerscher, F.J. Slack, Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6(4), 259–269 (2006)

    Article  Google Scholar 

  • T.K. Fabian, P. Fejerdy, P. Csermely, Salivary genomics, transcriptomics and proteomics: the emerging concept of the oral ecosystem and their use in the early diagnosis of cancer and other diseases. Curr. Genomics 9(1), 11–21 (2008)

    Article  Google Scholar 

  • R. Fan et al., Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008)

    Article  Google Scholar 

  • B. Fang, M. Zborowski, L.R. Moore, Detection of rare MCF-7 breast carcinoma cells from mixtures of human peripheral leukocytes by magnetic deposition analysis. Cytometry 36(4), 294–302 (1999)

    Article  Google Scholar 

  • M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005)

    Article  Google Scholar 

  • G.D. Gasperis et al., Microfuidic cell separation by 2D dielectrophoresis. Biomed. Microdevices 2(1), 41–49 (1999)

    Article  Google Scholar 

  • J.P. Gleghorn et al., Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1), 27 (2010)

    Article  Google Scholar 

  • D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  • J.R. Heath, M.E. Davis, Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008)

    Article  Google Scholar 

  • J.D. Hoheisel et al., Circulating Micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 7(1), e29770 (2012)

    Article  Google Scholar 

  • J.W. Hong, S.R. Quake, Integrated nanoliter systems. Nat. Biotechnol. 21(10), 1179–1183 (2003)

    Article  Google Scholar 

  • K. Hoshino et al., Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20), 3449–3457 (2011)

    Article  Google Scholar 

  • H.W. Hou et al., Microfluidic devices for blood fractionation. Micromachines 2(3), 319–343 (2011)

    Article  Google Scholar 

  • A.Y. Hsiao et al., Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16), 3020–3027 (2009)

    Article  Google Scholar 

  • C.P. Huang et al., Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9(12), 1740–1748 (2009)

    Article  Google Scholar 

  • Y. Huang et al., Evaluation of cancer stem cell migration using compartmentalizing microfluidic devices and live cell imaging. J. Visual. Exp. 58 (2011)

  • D. Huh et al., Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26(3), R73–R98 (2005)

    Article  Google Scholar 

  • P.J. Hung et al., Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89(1), 1–8 (2005)

    Article  Google Scholar 

  • S.C. Hur et al., Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11(5), 912–920 (2011)

    Article  Google Scholar 

  • D. Irimia, M. Toner, Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. (Camb.) 1(8–9), 506–512 (2009)

    Article  Google Scholar 

  • A. Jemal et al., Global cancer statistics. CA Cancer J. Clin. 61(2), 69–90 (2011)

    Article  Google Scholar 

  • J.V. Jokerst et al., Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron. 24(12), 3622–3629 (2009)

    Article  Google Scholar 

  • J. Kaiser, Medicine. Cancer’s circulation problem. Science 327(5969), 1072–1074 (2010)

    Article  Google Scholar 

  • J.H. Kang et al., A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip (2012a)

  • J.H. Kang et al., A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12(12), 2175–2181 (2012b)

    Article  Google Scholar 

  • J. Kim et al., A programmable microfluidic cell array for combinatorial drug screening. Lab Chip (2012)

  • R.T. Krivacic et al., A rare-cell detector for cancer. Proc. Natl. Acad. Sci. U. S. A. 101(29), 10501–10504 (2004)

    Article  Google Scholar 

  • J.S. Kuo et al., Deformability considerations in filtration of biological cells. Lab Chip 10(7), 837–842 (2010)

    Article  Google Scholar 

  • E.J. Lim et al., Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis. Lab Chip 12(12), 2199 (2012)

    Article  Google Scholar 

  • L. Liu et al., A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. Lab Chip 10(14), 1807–1813 (2010)

    Article  Google Scholar 

  • S. Maheswaran, D.A. Haber, Circulating tumor cells: a window into cancer biology and metastasis. Curr. Opin. Genet. Dev. 20(1), 96–99 (2010)

    Article  Google Scholar 

  • S. Maheswaran et al., Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359(4), 366–377 (2008)

    Article  Google Scholar 

  • A. Manz et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258 (1992)

    Article  Google Scholar 

  • O.J. Miller, A. El Harrak, T. Mangeat, J.-C. Baret, L. Frenz, B. El Debs, E. Mayot, M.L. Samuels, E.K. Rooney, P. Dieu, M. Galvan, D.R. Link, A.D. Griffiths, High-resolution dose–response screening using droplet-based microfluidics. PNAS 109(2), 378–383 (2012)

    Article  Google Scholar 

  • P.S. Mitchell et al., Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. 105(30), 10513–10518 (2008)

    Article  Google Scholar 

  • H. Mohamed et al., Development of a rare cell fractionation device: application for cancer detection. IEEE Trans. Nanobiosci. 3(4), 251–256 (2004)

    Article  Google Scholar 

  • H. Mohamed, M. Murray, J.N. Turner, M. Caggana, Circulating tumor cells: captured with a micromachined device. NSTI-Nanotech 1 (2005)

  • H.-S. Moon et al., Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6), 1118 (2011)

    Article  Google Scholar 

  • N.A. Mousa et al., Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci. Transl. Med. 1(1), 1ra2 (2009)

    Article  MathSciNet  Google Scholar 

  • J.H. Myung et al., Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: implications for the effective separation of circulating tumor cells (CTCs). Langmuir 26(11), 8589–8596 (2010)

    Article  Google Scholar 

  • S. Nagrath et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007)

    Article  Google Scholar 

  • D.X. Nguyen, J. Massagué, Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8(5), 341–352 (2007)

    Article  Google Scholar 

  • M. Nora Dickson et al., Efficient capture of circulating tumor cells with a novel immunocytochemical microfluidic device. Biomicrofluidics 5(3), 34119–3411915 (2011)

    Article  Google Scholar 

  • R. Pal et al., An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5(10), 1024–1032 (2005)

    Article  Google Scholar 

  • D. Pekin et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13), 2156–2166 (2011)

    Article  Google Scholar 

  • J. Ratajczak et al., Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9), 1487–1495 (2006)

    Article  Google Scholar 

  • D.R. Reyes et al., Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74(12), 2623–2636 (2002)

    Article  Google Scholar 

  • M. Roessler, Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res. 11(18), 6550–6557 (2005)

    Article  MathSciNet  Google Scholar 

  • A.E. Saliba et al., Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl. Acad. Sci. U. S. A. 107(33), 14524–14529 (2010)

    Article  Google Scholar 

  • J. Santos et al., Molecular biomarker analyses using circulating tumor cells. PLoS One 5(9), e12517 (2010)

    Article  Google Scholar 

  • E. Schattner, A chip against cancer. Sci. Am. 300(4), 21–22 (2009)

    Article  Google Scholar 

  • R. Seigneuric et al., From nanotechnology to nanomedicine: applications to cancer research. Curr. Mol. Med. 10(7), 640–652 (2010)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21), 3563–3576 (2003)

    Article  Google Scholar 

  • R. Siegel et al., Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61(4), 212–236 (2011)

    Article  Google Scholar 

  • A.M. Sieuwerts et al., Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J. Natl. Cancer Inst. 101(1), 61–66 (2009)

    Article  Google Scholar 

  • J.W. Song et al., Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4(6), e5756 (2009)

    Article  Google Scholar 

  • P.K. Sorger, Microfluidics closes in on point-of-care assays. Nat. Biotechnol. 26(12), 1345–1346 (2008)

    Article  Google Scholar 

  • E. Stern et al., Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010)

    Article  MathSciNet  Google Scholar 

  • S.L. Stott et al., Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2(25), 25ra23 (2010a)

    Article  Google Scholar 

  • S.L. Stott, C.-H. Hsu, D.I. Tsukrov, M. Yud, D.T. Miyamoto, B.A. Waltman et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. PNAS 107(43), 18392–18397 (2010b)

    Article  Google Scholar 

  • J.H. Sung, M.L. Shuler, Microtechnology for mimicking in vivo tissue environment. Ann. Biomed. Eng. 40(6), 1289–1300 (2012)

    Article  Google Scholar 

  • K.E. Sung et al., Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. (Camb.) 3(4), 439–450 (2011)

    Article  Google Scholar 

  • S. Takayama et al., Subcellular positioning of small molecules. Nature 411(6841), 1016 (2001)

    Article  Google Scholar 

  • S. Takayama et al., Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol. 10(2), 123–130 (2003)

    Article  Google Scholar 

  • A.H. Talasaz et al., Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl. Acad. Sci. 106(10), 3970–3975 (2009)

    Article  Google Scholar 

  • D.D. Taylor, C. Gerçel-Taylor, Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92(2), 305–311 (2005)

    Google Scholar 

  • H. Tian, Rapid detection of deletion, insertion, and substitution mutations via heteroduplex analysis using capillary- and microchip-based electrophoresis. Genome Res. 10(9), 1403–1413 (2000)

    Article  Google Scholar 

  • M. Tsujiura et al., Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 102(7), 1174–1179 (2010)

    Article  Google Scholar 

  • R. Valenti, Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor—mediated suppressive activity on T lymphocytes. Cancer Res. 66(18), 9290–9298 (2006)

    Article  Google Scholar 

  • G.M. Walker, H.C. Zeringue, D.J. Beebe, Microenvironment design considerations for cellular scale studies. Lab Chip 4(2), 91–97 (2004)

    Article  Google Scholar 

  • S.J. Wang et al., Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300(1), 180–189 (2004)

    Article  Google Scholar 

  • M.M. Wang et al., Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23(1), 83–87 (2005)

    Article  Google Scholar 

  • R. Weinberg, The Biology of Cancer (Garland Science, New York, 2006)

    Google Scholar 

  • P.T. Went et al., Frequent EpCam protein expression in human carcinomas. Hum. Pathol. 35(1), 122–128 (2004)

    Article  Google Scholar 

  • P. Went et al., Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br. J. Cancer 94(1), 128–135 (2006)

    Article  Google Scholar 

  • A.K. White et al., High-throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci. U. S. A. 108(34), 13999–14004 (2011)

    Article  Google Scholar 

  • G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  • D. Wlodkowic, Z. Darzynkiewicz, Microfluidics: emerging prospects for anti-cancer drug screening. World J Clin Oncol 1(1), 18–23 (2010)

    Article  Google Scholar 

  • D. Wlodkowic et al., Biological implications of polymeric microdevices for live cell assays. Anal. Chem. 81(23), 9828–9833 (2009a)

    Article  Google Scholar 

  • D. Wlodkowic et al., Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal. Chem. 81(13), 5517–5523 (2009b)

    Article  Google Scholar 

  • D. Wlodkowic, J. Skommer, Z. Darzynkiewicz, Cytometry in cell necrobiology revisited. Recent advances and new vistas. Cytom. A 77(7), 591–606 (2010)

    Article  Google Scholar 

  • A.P. Wong et al., Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29(12), 1853–1861 (2008)

    Article  Google Scholar 

  • T.K.F. Yung et al., Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin. Cancer Res. 15(6), 2076–2084 (2009)

    Article  Google Scholar 

  • G. Zheng et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)

    Article  Google Scholar 

  • S. Zheng et al., Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A 1162(2), 154–161 (2007)

    Article  Google Scholar 

  • S. Zheng et al., 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13(1), 203–213 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Director’s New Innovator Award 1DP2 OD006672-01, and 3M Non tenured faculty award to Prof. Nagrath. The work was performed in part at the Lurie Nanofabrication Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunitha Nagrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Nagrath, S. Microfluidics and cancer: are we there yet?. Biomed Microdevices 15, 595–609 (2013). https://doi.org/10.1007/s10544-012-9734-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9734-8

Keywords

Navigation