Skip to main content

Advertisement

Log in

Electrical Conductivities of the Freshly Excised Cerebral Cortex in Epilepsy Surgery Patients; Correlation with Pathology, Seizure Duration, and Diffusion Tensor Imaging

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

The electrical conductivities (σ) of freshly excised neocortex and subcortical white matter were studied in the frequency range of physiological relevance for EEG (5–1005 Hz) in 21 patients (ages 0.67 to 55 years) undergoing epilepsy neurosurgery. Surgical patients were classified as having cortical dysplasia (CD) or non-CD pathologies. Diffusion tensor imaging (DTI) for apparent diffusion coefficient (ADC) and fractional anisotropy (FA) was obtained in 9 patients. Results found that electrical conductivities in freshly excised neocortex vary significantly from patient to patient (σ = 0.0660–0.156 S/m). Cerebral cortex from CD patients had increased conductivities compared with non-CD cases. In addition, longer seizure durations positively correlated with conductivities for CD tissue, while they negatively correlated for non-CD tissue. DTI ADC eigenvalues inversely correlated with electrical conductivity in CD and non-CD tissue. These results in a small initial cohort indicate that electrical conductivity of freshly excised neocortex from epilepsy surgery patients varies as a consequence of clinical variables, such as underlying pathology and seizure duration, and inversely correlates with DTI ADC values. Understanding how disease affects cortical electrical conductivity and ways to non-invasively measure it, perhaps through DTI, could enhance the ability to localize EEG dipoles and other relevant information in the treatment of epilepsy surgery patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Awada, K.A., Jackson, D.R., Baumann, S.B., Williams, J.T., Wilton, D.R., Fink, P.W. and Prasky, B.R. Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans. Biomed. Eng. 1998, 45(9): 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Baillet, S., Garnero, L., Marin, G. and Hugonin, J.P. Combined MEG and EEG source imaging by minimization of mutual information. IEEE Trans. Biomed. Eng. 1999, 46(5): 522–534.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, S.B., Wonzy, D.R., Kelly, S.K. and Meno, F.M. IEEE Trans. Biomed. Eng. 1997, 44(3): 220–223.

    Article  CAS  Google Scholar 

  • Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H.P. and Wollinsky, K.H. Localization of epileptic foci with electric, magnetic and combined electromagnetic models. Electroencephalogr. Clin. Neurophysiol. 1998, 106.

  • Ebersole, J.S. Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 50: 167–174.

    PubMed  CAS  Google Scholar 

  • Ebersole, J., Esquires, K. and Gamelin, J. Simultaneous MEG and EEG provide complementary dipole models of temporal lobe spikes. Epilepsia 1993, 34: 143 (abstract).

  • Fuchs, M., Drenckhahn, R., Wischmann, H.A., and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng. 1998, 45(8): 980–997.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, M., Wagner, M., Wischmann, H.A., Kohler, T., Theissen, A., Drenckhahn, R. and Buchner, H. Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr. Clin. Neurophysiol. 1998, 107(2): 93–111.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, C. Dielectric properties of biological tissue: Variation with age. Bioelectromagnetics 2005, 7(Suppl.): S12–S18.

    Article  PubMed  Google Scholar 

  • Gabriel, C., Gabriel, S. and Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41: 2231–2249.

    Article  PubMed  CAS  Google Scholar 

  • Geddes, L.A. and Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. & Biol. Eng. 1967, 5: 271–293.

    Article  CAS  Google Scholar 

  • Gencer, N.G. and Acar, C.E. Sensitivity of EEG and MEG measurements to tissue conductivity. Phys. Med. Biol. 2004, 49(5): 701–717.

    Article  PubMed  Google Scholar 

  • Gupta, R.K., Sinha, U., Cloughesy, T.F. and Alger, J.R. Inverse correlation between the choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn. Reson. Med. 1999, 41: 2–7.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, D., Nehorai, A. and Muravchik, C.H. Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans. Biomed. Eng. 2004, 51(12): 2113–2122.

    Article  PubMed  Google Scholar 

  • Hämäläinen, M.S. and Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 1989, 36(2): 165–171.

    Article  PubMed  Google Scholar 

  • Haueisen, J., Tuch, D.S., Ramon, C., Scimpf, P.H., Wedeen, V.J., George, J.S. and Belliveau, J.W. The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 2002, 15(1): 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Haueisen, J., Bottner, A., Nowak, H., Brauer, H. and Weiller, C. The influence of conductivity changes in boundary element compartments on the forward and inverse problem in electroencephalography and magnetoencephalography. Biomed. Tech. (Berl.) 1999, 44(6): 150–157.

    CAS  Google Scholar 

  • Haueisen, J., Ramon, C., Eiselt, M., Brauer, H. and Nowak, H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans. Biomed. Eng. 1997, 44(8).

  • Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R.J., Jaaskelainen, I.P., Pekkonen, E. and Naatannen, R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr. Clin. Neurophysiol. 1998, 108(4): 370–379.

    Article  PubMed  CAS  Google Scholar 

  • Law, S. Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr. 1993, 6: 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G. Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models. Hum. Brain Mapp. 1998, 6(4): 250–269.

    Article  PubMed  CAS  Google Scholar 

  • Mathern, G.W., Giza, C.C., Yudovin, S., Vinters, H.V., Peacock, W.J., Shewmon, D.A. and Shields, W.D. Postoperative seizure control and antiepileptic drug use in pediatric epilepsy surgery patients: the UCLA experience, 1986–1997. Epilepsia 1999, 40(12): 1740–1749.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, P. and Srinivasam, R. Electric fields of the brain: The neurophysics of EEG, 2nd edn. Oxford University Press, USA, 2005.

    Google Scholar 

  • Nunez, P.L. Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, 1995, p. 667.

    Google Scholar 

  • Okada, Y.C., Lahteenmaki, A. and Xu, C. Experimental analysis of distortion of magnetoencephalography signals by skull. Clin. Neurophysiol. 1999, 110(2): 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Ollikainen, J.O., Vauhkonen, M., Karjalainen, P.A. and Kaipio, J.P. Effects of local skull inhomogeneities on EEG source estimation. Med. Eng. Phys. 1999, 21(3): 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Pohlmeier, R., Buchner, H., Knoll, G., Rienäcker, A., Beckmann, R. and Pesch, J. The influence of skull—Conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr. 1997, 9(3): 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Schmid, G., Neubauer, G., Illievich, U.M. and Alesch, F. Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 2003a, 24(6): 413–422.

    Article  Google Scholar 

  • Schmid, G., Neubauer, G. and Mazal, P.R. Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz. Bioelectromagnetics 2003b, 24(6): 423–430.

    Article  Google Scholar 

  • Schwan, H.P. Electrode polarization impedance and measurements in biological materials. Ann. N.Y. Acad. Sci. 1968, 148(1): 191–209.

    Article  PubMed  CAS  Google Scholar 

  • Sekino, M., Inoue, Y. and Ueno, S. Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurol. Clin. Neurophysiol. 2004, 2004: 55.

  • Stinstra, J.G. and Peters, M.J. The volume conductor may act as a temporal filter on the ECG and EEG. Med. Biol. Eng. Comput. 1998, 36: 711–716.

    Article  PubMed  CAS  Google Scholar 

  • Stock, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. Thesis, 1986.

  • Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S. and Belliveau, J.W. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(20), 11697–11701.

    Google Scholar 

  • van den Broek, S.P., Reiders, F., Donderwinkel, M. and Peters, M.J. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 1998, 106.

  • Van Uitert, R., Johnson, C. and Zhukov, L. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans. Biomed. Eng. 2004, 51(12): 2129–2137.

    Article  PubMed  Google Scholar 

  • Vatta, F., Bruno, P. and Inchingolo, P. Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter. J. Clin. Neurophysiol. 2002, 19(1): 1–15.

    Article  PubMed  Google Scholar 

  • Wen, P. and Li, Y. Comaprison study of different head model structures with homogeneous/inhomogeneous conductivity. Aust. Phys. Eng. Sci. Med. 2001, 24(1): 31–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhtari, M., Salamon, N., Duncan, R. et al. Electrical Conductivities of the Freshly Excised Cerebral Cortex in Epilepsy Surgery Patients; Correlation with Pathology, Seizure Duration, and Diffusion Tensor Imaging. Brain Topogr 18, 281–290 (2006). https://doi.org/10.1007/s10548-006-0006-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-006-0006-x

Key Words

Navigation