Skip to main content
Log in

A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Due to its high temporal resolution, electroencephalography (EEG) is widely used to study functional and effective brain connectivity. Yet, there is currently a mismatch between the vastness of studies conducted and the degree to which the employed analyses are theoretically understood and empirically validated. We here provide a simulation framework that enables researchers to test their analysis pipelines on realistic pseudo-EEG data. We construct a minimal example of brain interaction, which we propose as a benchmark for assessing a methodology’s general eligibility for EEG-based connectivity estimation. We envision that this benchmark be extended in a collaborative effort to validate methods in more complex scenarios. Quantitative metrics are defined to assess a method’s performance in terms of source localization, connectivity detection and directionality estimation. All data and code needed for generating pseudo-EEG data, conducting source reconstruction and connectivity estimation using baseline methods from the literature, evaluating performance metrics, as well as plotting results, are made publicly available. While this article covers only EEG modeling, we will also provide a magnetoencephalography version of our framework online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acar ZA, Makeig S (2010) Neuroelectromagnetic forward head modeling toolbox. J Neurosci Methods 190(2):258–270

  • Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccalà LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Babiloni F (2006) Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data. IEEE Trans Biomed Eng 53:1802–1812

    Article  PubMed  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, de Vico Fallani F, Salinari S, Ursino M, Zavaglia M, Ding L, Edgar JC, Miller GA, He B, Babiloni F (2007) Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28(2):143–157

  • Astolfi L et al (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116(4):920–932

    Article  CAS  PubMed  Google Scholar 

  • Baccalá LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84:463–474

    Article  PubMed  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001a) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30

    Article  Google Scholar 

  • Baillet S, Riera JJ, Marin G, Mangin JF, Aubert J, Garnero L (2001b) Evaluation of inverse methods and head models for EEG source localization using a human skull phantom. Phys Med Biol 46(1):77–96

    Article  CAS  PubMed  Google Scholar 

  • Barnett L, Seth AK (2014) The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods 223:50–68

    Article  PubMed  Google Scholar 

  • Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M, Laureys S, Seth AK (2012) Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS One 7(1):e29072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barttfeld P, Petroni A, Baez S, Urquina H, Sigman M, Cetkovich M, Torralva T, Torrente F, Lischinsky A, Castellanos X, Manes F, Ibanez A (2014) Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology 69(2):65–75

    Article  PubMed  Google Scholar 

  • Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, Gotman J (2006) EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage 30(4):1161–1170

    Article  PubMed  Google Scholar 

  • Blythe DAJ, Haufe S, Müller KR, Nikulin VV (2014) The effect of linear mixing in the EEG on hurst exponent estimation. NeuroImage 99:377–387

  • Bola M, Sabel BA (2015) Dynamic reorganization of brain functional networks during cognition. Neuroimage 114:398–413

    Article  PubMed  Google Scholar 

  • Breakspear M, Brammer M, Robinson PA (2003) Construction of multivariate surrogate sets from nonlinear data using the wavelet transform. Phys D Nonlinear Phenom 182:1–22

    Article  Google Scholar 

  • Breakspear M, Brammer MJ, Bullmore ET, Das P, Williams LM (2004) Spatiotemporal wavelet resampling for functional neuroimaging data. Hum Brain Mapp 23(1):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104

    Article  PubMed  Google Scholar 

  • Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63(2):910–920

    Article  CAS  PubMed  Google Scholar 

  • Castaño Candamil S, Höhne J, Martinez-Vargas JD, An X-W, Castellanos-Dominguez G, Haufe S (2015) Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. Neuroimage 118:598–612

  • Chella F, Marzetti L, Pizzella V, Zappasodi F, Nolte G (2014) Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG. Neuroimage 91:146–161

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Vorwerk J, Wolters CH, Knosche TR (2015) Influence of the head model on EEG and MEG source connectivity analyses. Neuroimage 110:60–77

    Article  PubMed  Google Scholar 

  • Colton D, Kress R (1997) Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, Springer, Berlin

  • Dähne S, Nikulin VV, Ramírez D, Schreier PJ, Müller KR, Haufe S (2014) Finding brain oscillations with power dependencies in neuroimaging data. NeuroImage 96:334–348

    Article  PubMed  Google Scholar 

  • Darvas F, Pantazis D, Kucukaltun-yildirim E, Leahy RM (2004) Mapping human brain function with meg and EEG: methods and validation. NeuroImage 23:289–299

    Article  Google Scholar 

  • De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Kurths J, Gao S, Cichocki A, Colosimo A, Babiloni F (2007) Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis. Hum Brain Mapp 28(12):1334–1346

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:130714

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding L, He B (2008) Sparse source imaging in EEG with accurate field modeling. Hum Brain Mapp 29:1053–1067

    Article  PubMed  Google Scholar 

  • Dolan KT, Neiman A (2002) Surrogate analysis of coherent multichannel data. Phys Rev E 65(2 Pt 2):026108

    Article  CAS  Google Scholar 

  • Evans A, Collins D, Mills SR, Brown ED, Kelly RL, Peters T (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference, 1993 IEEE conference record, vol. 3, pp 1813–1817

  • Ewald A, Marzetti L, Zappasodi F, Meinecke FC, Nolte G (2012) Estimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space. NeuroImage 60(1):476–488

    Article  PubMed  Google Scholar 

  • Ewald A, Nolte FSG (2013) Identifying causal networks of neuronal sources from eeg/meg data with the phase slope index: a simulation study. Biomed Tech 22:1–14

    Google Scholar 

  • Fonov V, Evans A, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102

    Article  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative GroupNeuroImage (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327

  • Geffroy D, Rivière D, Denghien I, Souedet N, Laguitton S, Cointepas Y (2011) Brainvisa: a complete software platform for neuroimaging. In: Python in Neuroscience workshop. Paris

  • Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77(378):304–313

  • Gomes JM, Bedard C, Valtcheva S, Nelson M, Khokhlova V, Pouget P, Venance L, Bal T, Destexhe A (2016) Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons. Biophys J 110(1):234–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008) Measuring directional coupling between EEG sources. NeuroImage 43:497–508

    Article  PubMed  Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M (2013a) MEG and EEG data analysis with MNE-Python. Front Neurosci 7:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Gramfort A, Strohmeier D, Haueisen J, Hamalainen MS, Kowalski M (2013b) Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. Neuroimage 70:410–422

    Article  CAS  PubMed  Google Scholar 

  • Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98(2):694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grova C, Daunizeau J, Kobayashi E, Bagshaw AP, Lina JM, Dubeau F, Gotman J (2008) Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. Neuroimage 39(2):755–774

  • Hämäläinen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    Article  PubMed  Google Scholar 

  • Haufe S (2011) Towards EEG source connectivity analysis. Ph.D. thesis, Berlin Institute of Technology

  • Haufe S, Huang Y, Parra LC (2015) A highly detailed FEM volume conductor model of the ICBM152 average head template for EEG source imaging and tCS targeting. In: Conference proceedings IEEE engineering in medicine and biology society (In Press)

  • Haufe S, Nikulin V, Ziehe A, Müller K-R, Nolte G (2008) Combining sparsity and rotational invariance in EEG/MEG source reconstruction. NeuroImage 42:726–738

    Article  PubMed  Google Scholar 

  • Haufe S, Nikulin VV, Müller K-R, Nolte G (2012a) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64:120–133

    Article  PubMed  Google Scholar 

  • Haufe S, Nikulin VV, Nolte G (2012b) Alleviating the influence of weak data asymmetries on Granger-causal analyses. In: Theis F, Cichocki A, Yeredor A, Zibulevsky M (eds) Latent variable analysis and signal separation. Lecture notes in computer science, vol 7191. Springer, Berlin, pp 25–33

    Chapter  Google Scholar 

  • Haufe S, Nikulin VV, Ziehe A, Müller K-R, Nolte G (2009) Estimating vector fields using sparse basis field expansions. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21, pp. 617–624. MIT Press, New York

  • Haufe S, Tomioka R, Dickhaus T, Sannelli C, Blankertz B, Nolte G, Müller K-R (2011) Large-scale EEG/MEG source localization with spatial flexibility. NeuroImage 54:851–859

    Article  PubMed  Google Scholar 

  • Haufe S, Tomioka R, Nolte G, Müller K-R, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57:1954–1963

    Article  PubMed  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Parra LC, Haufe S, (2015) The New York Head—a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage. In Press

  • Kamiński MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65:203–210

    Article  PubMed  Google Scholar 

  • Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30(4):1273–1284

    Article  PubMed  Google Scholar 

  • Kiebel SJ, Garrido MI, Moran RJ, Friston KJ (2008) Dynamic causal modelling for EEG and MEG. Cogn Neurodyn 2:121–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Korzeniewska A, Mańczak M, Kamiński M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125(1–2):195–207

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lantz G, Spinelli L, Menendez RG, Seeck M, Michel CM (2001) Localization of distributed sources and comparison with functional MRI. Epileptic Disord Special Issue, pp 45–58

  • Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD (1998) A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol 107(2):159–173

    Article  CAS  PubMed  Google Scholar 

  • Marin Garcia AO, Muller MF, Schindler K, Rummel C (2013) Genuine cross-correlations: which surrogate based measure reproduces analytical results best? Neural Netw 46:154–164

    Article  PubMed  Google Scholar 

  • Marinazzo D, Liao W, Chen H, Stramaglia S (2011) Nonlinear connectivity by Granger causality. Neuroimage 58(2):330–338

    Article  PubMed  Google Scholar 

  • Marzetti L, Del Gratta C, Nolte G (2008) Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. NeuroImage 42:87–98

    Article  PubMed  Google Scholar 

  • Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage 2 (2):89–101

  • Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Proces 47:332–340

    Article  Google Scholar 

  • Mullen T, Acar ZA, Worrell G, Makeig S (2011) Modeling cortical source dynamics and interactions during seizure. Conf Proc IEEE Eng Med Biol Soc 2011:1411–1414

    PubMed Central  Google Scholar 

  • Muthuraman M et al (2014) Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements. PLoS One 9(3):e91441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307

    Article  PubMed  Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100:234101

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency. I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9

    Article  Google Scholar 

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiol 112(4):713–719

    Article  CAS  Google Scholar 

  • Ou W, Hämäläinen MS, Golland P (2009) A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44:932–946

    Article  PubMed  Google Scholar 

  • Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. Neuroimage 60(1):305–323

    Article  PubMed  Google Scholar 

  • Palus M (2008) Bootstrapping multifractals: surrogate data from random cascades on wavelet dyadic trees. Phys Rev Lett 101(13):134101

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341

  • Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73(7):951–954

    Article  CAS  PubMed  Google Scholar 

  • Rath C, Gliozzi M, Papadakis IE, Brinkmann W (2012) Revisiting algorithms for generating surrogate time series. Phys Rev Lett 109(14):144101

    Article  CAS  PubMed  Google Scholar 

  • Rivière D, Régis J, Cointepas Y, Papadopoulos-Orfanos D, Cachia A, Mangin J-F (2003) A freely available Anatomist/BrainVISA package for structural morphometry of the cortical sulci. In: Proceedings 9th HBM. Neuroimage 19(2). New York, p 934

  • Rodrigues J, Andrade A (2015) Synthetic neuronal datasets for benchmarking directed functional connectivity metrics. PeerJ 3:e923

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  PubMed  Google Scholar 

  • Sameshima K, Takahashi DY, Baccalá LA (2015) On the statistical performance of granger-causal connectivity estimators. Brain Inf 2:1–15

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Abe M, Okumura E, Okada T, Kondo K, Sekihara K, Ide W, Kamada H (2013) Disturbed resting functional inter-hemispherical connectivity of the ventral attentional network in alpha band is associated with unilateral spatial neglect. PLoS One 8(9):e73416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179(1):121–130

    Article  PubMed  Google Scholar 

  • Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbazi F, Ewald A, Nolte G (2015) Self-Consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112:299–309

    Article  PubMed  Google Scholar 

  • Shahbazi F, Ewald A, Ziehe A, Nolte G (2010) Constructing surrogate data to control for artifacts of volume conduction for functional connectivity measures. In: Magjarevic R, Nagel JH, Supek S, Susac A (eds) 17th International conference on biomagnetism advances in biomagnetism—biomag. IFMBE proceedings, vol 28, pp 207–210. Springer, Berlin

  • Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121–134

    Article  CAS  PubMed  Google Scholar 

  • Silfverhuth MJ, Hintsala H, Kortelainen J, Seppanen T (2012) Experimental comparison of connectivity measures with simulated EEG signals. Med Biol Eng Comput 50(7):683–688

    Article  PubMed  Google Scholar 

  • Spiegler A, Kiebel SJ, Atay FM, Knosche TR (2010) Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. Neuroimage 52(3):1041–1058

    Article  PubMed  Google Scholar 

  • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32(1):129–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716. doi:10.1155/2011/879716

    Article  PubMed  PubMed Central  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Phys D 58(14):77–94

    Article  Google Scholar 

  • Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58(2):339–361

    Article  PubMed  Google Scholar 

  • van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, Marinazzo D (2014) Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol 121:19–35

    Article  PubMed  Google Scholar 

  • Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  PubMed  Google Scholar 

  • Velez-Perez H, Louis-Dorr V, Ranta R, Dufaut M (2008) Connectivity estimation of three parametric methods on simulated electroencephalogram signals. Conf Proc IEEE Eng Med Biol Soc 2008:2606–2609

    Google Scholar 

  • Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy-a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67

    Article  PubMed  Google Scholar 

  • Vinck M, Huurdeman L, Bosman CA, Fries P, Battaglia FP, Pennartz CM, Tiesinga PH (2015) How to detect the Granger-causal flow direction in the presence of additive noise? Neuroimage 108:301–318

    Article  PubMed  Google Scholar 

  • Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607

    Article  PubMed  Google Scholar 

  • Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS (2010) The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 51(4):491–505

    Article  PubMed  Google Scholar 

  • Wibral M, Pampu N, Priesemann V, Siebenhuhner F, Seiwert H, Lindner M, Lizier JT, Vicente R (2013) Measuring information-transfer delays. PLoS One 8(2):e55809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wibral M, Rahm B, Rieder M, Lindner M, Vicente R, Kaiser J (2011) Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks. Prog Biophys Mol Biol 105(1–2):80–97

    Article  PubMed  Google Scholar 

  • Winkler I, Panknin D, Bartz D, Müller K-R, Haufe S (2015) Validity of time reversal for testing Granger causality. IEEE Trans Sig Process 64(11):2746–2760

    Article  Google Scholar 

  • Zwoliński P, Roszkowski M, Żygierewicz J, Haufe S, Nolte G, Durka PJ (2010) Open database of epileptic EEG with MRI and postoperational assessment of foci—a real world verification for the EEG inverse solutions. Neuroinformatics 8:285–299

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Marie Curie International Outgoing Fellowship (Grant No. PIOF-GA-2013-625991) within the 7th European Community Framework Programme and the German Research Foundation (DFG) with SFB 936/Z3 and the BMBF (031A130). We thank Pedro Valdes-Sosa for suggesting the creation of a benchmark, Guido Nolte for contributing Matlab code, and the two Reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Haufe.

Additional information

This is one of several papers published together in Brain Topography on the "Special Issue: Controversies in EEG Source Analysis".

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haufe, S., Ewald, A. A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies. Brain Topogr 32, 625–642 (2019). https://doi.org/10.1007/s10548-016-0498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-016-0498-y

Keywords

Navigation