Skip to main content

Advertisement

Log in

Quantifying the Effect of Demixing Approaches on Directed Connectivity Estimated Between Reconstructed EEG Sources

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Electrical activity recorded on the scalp using electroencephalography (EEG) results from the mixing of signals originating from different regions of the brain as well as from artifactual sources. In order to investigate the role of distinct brain areas in a given experiment, the signal recorded on the sensors is typically projected back into the brain (source reconstruction) using algorithms that address the so-called EEG “inverse problem”. Once the activity of sources located inside of the brain has been reconstructed, it is often desirable to study the statistical dependencies among them, in particular to quantify directional dynamical interactions between brain areas. Unfortunately, even when performing source reconstruction, the superposition of signals that is due to the propagation of activity from sources to sensors cannot be completely undone, resulting in potentially biased estimates of directional functional connectivity. Here we perform a set of simulations involving interacting sources to quantify source connectivity estimation performance as a function of the location of the sources, their distance to each other, the noise level, the source reconstruction algorithm, and the connectivity estimator. The generated source activity was projected onto the scalp and projected back to the cortical level using two source reconstruction algorithms, linearly constrained minimum variance beamforming and ‘Exact’ low-resolution tomography (eLORETA). In source space, directed connectivity was estimated using multi-variate Granger causality and time-reversed Granger causality, and compared with the imposed ground truth. Our results demonstrate that all considered factors significantly affect the connectivity estimation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The code necessary to reproduce these simulations is available at: https://github.com/paolop21/simulation_source_connectivity. Simulations were run in parallel on the HPC platform of the University of Ghent, with a running time depending on the available nodes on the network. An iteration of the simulation on a Dell Inspiron 5567, intel i7, 16 GB RAM takes 2,4 s. The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the VSC (Flemish Super-computer Center), funded by Ghent University, FWO and the Flemish Government—department EWI. The results of the simulations and the structures necessary to run the code are available at: https://zenodo.org/record/1157196#.WmZ1K6jiY2w.

References

  • Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni C, Basilisco A, Rossini PM, Ding L, Ni Y, He B, Marciani MG, Babiloni F (2004) Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn Reson Imaging 22(10):1457–1470

    Article  PubMed  Google Scholar 

  • Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini PM, Ding L, Ni Y, Cheng J, Christine K, Sweeney J, He B (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. NeuroImage 24(1):118–131

    Article  CAS  PubMed  Google Scholar 

  • Barnett L, Seth AK (2014) The MVGC multivariate granger causality toolbox: a new approach to granger-causal inference. J Neurosci Methods 223:50–68

    Article  PubMed  Google Scholar 

  • Bell JB (1978) Review of solutions of Ill-posed problems. Math Comput 32(144):1320–1322

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300

    Google Scholar 

  • Biscay RJ, Bosch-Bayard JF, Pascual-Marqui RD (2018) Unmixing EEG inverse solutions based on brain segmentation. Front Neurosci 12:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Blinowska KJ (2011) Review of the methods of determination of directed connectivity from multichannel data. Med Biol Eng Comput 49(5):521–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage 63(2):910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner C, Billinger M, Seeber M, Mullen TR, Makeig S (2016) Volume conduction influences scalp-based connectivity estimates. Front Comput Neurosci 10:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung BLP, Riedner BA, Tononi G, Van Veen BD (2010) Estimation of cortical connectivity from EEG using state-space models. IEEE Trans Biomed Eng 57(9):2122–2134

    Article  PubMed  PubMed Central  Google Scholar 

  • Colclough GL, Brookes MJ, Smith SM, Woolrich MW (2015) A symmetric multivariate leakage correction for MEG connectomes. NeuroImage 117:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Steen FD, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D (2016) Critical comments on EEG sensor space dynamical connectivity analysis. Brain Topogr. https://doi.org/10.1007/s10548-016-0538-7

    Article  PubMed  Google Scholar 

  • Faes L, Stramaglia S, Marinazzo D (2017) On the interpretability and computational reliability of frequency-domain Granger causality. F1000Research 6:1710

    Article  PubMed  PubMed Central  Google Scholar 

  • Farahibozorg S-R, Henson RN, Hauk O (2018) Adaptive cortical parcellations for source reconstructed EEG/MEG connectomes. NeuroImage 169:23–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327

    Article  PubMed  Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78

    Article  Google Scholar 

  • Geweke JF (1984) Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc 79(388):907–915

    Article  Google Scholar 

  • Gómez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008) Measuring directional coupling between EEG sources. NeuroImage 43(3):497–508

    Article  PubMed  Google Scholar 

  • Gonzalez-Moreira E. Paz-Linares D, Martinez-Montes E, Valdes-Hernandez P, Bosch-Bayard J, Bringas-Vega ML, Valdes-Sosa P (2018) Populational super-resolution sparse M/EEG sources and connectivity estimation. bioRxiv. https://doi.org/10.1101/346569

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  • Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Haufe S, Ewald A (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr. https://doi.org/10.1007/s10548-016-0498-y

    Article  PubMed  Google Scholar 

  • Haufe S, Tomioka R, Nolte G, Müller KR, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57(8):1954–1963

    Article  PubMed  Google Scholar 

  • Haufe S, Nikulin VV, Nolte G (2012) Alleviating the influence of weak data asymmetries on granger-causal analyses. In: Theis F, Cichocki A, Yeredor A, Zibulevsky M (eds) Latent variable analysis and signal separation. Springer, Berlin, pp 25–33

    Chapter  Google Scholar 

  • Haufe S, Nikulin VV, Müller KR, Nolte G (2013) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64:120–133

    Article  PubMed  Google Scholar 

  • Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 157:531–544

    Article  CAS  PubMed  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890

    Article  CAS  PubMed  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. NeuroImage 19(2):466–470

    Article  PubMed  Google Scholar 

  • Huang Y, Parra LC, Haufe S (2016) The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage 140:150–162

    Article  PubMed  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  CAS  Google Scholar 

  • Mahjoory K, Nikulin VV, Botrel L, Linkenkaer-Hansen K, Fato MM, Haufe S (2017) Consistency of EEG source localization and connectivity estimates. NeuroImage 152:590–601

    Article  PubMed  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307

    Article  PubMed  Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100(23):234101

    Article  CAS  PubMed  Google Scholar 

  • Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R (2010) Comparison of granger causality and phase slope index. In: Proceedings of workshop on causality: objectives and assessment at NIPS 2008. PMLR 6:267–276

    Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the Neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103(5):499–515

    Article  CAS  PubMed  Google Scholar 

  • Palva JM, Wang SH, Palva S, Zhigalov A, Monto S, Brookes MJ, Schoffelen JM, Jerbi K (2018) Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures. NeuroImage 173:632–643

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. ArXiv07103341 Math-Ph Physicsphysics Q-Bio, Oct. 2007

  • Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Transact A 369(1952):3768–3784

    Article  Google Scholar 

  • Pascual-Marqui R, Biscay RJ, Bosch-Bayard J, Faber PL, Kinoshita T, Kochi K, Milz P, Nishida K, Yoshimura M (2017) Innovations orthogonalization: a solution to the major pitfalls of EEG/MEG ‘leakage correction. bioRxiv. https://doi.org/10.1101/178657

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VI (1977) Solutions of ill-posed problems. Winston, New York

    Google Scholar 

  • van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  PubMed  Google Scholar 

  • Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 55(4):1548–1565

    Article  PubMed  Google Scholar 

  • Vinck M, Huurdeman L, Bosman CA, Fries P, Battaglia FP, Pennartz CM, Tiesinga PH (2015) How to detect the Granger-causal flow direction in the presence of additive noise? NeuroImage 108(Supplement C):301–318

    Article  PubMed  Google Scholar 

  • Wang SH, Lobier M, Siebenhuhner F, Puolivali T, Palva S, Palva JM (2017) Hyperedge bundling: a practical solution to spurious interactions in MEG/EEG source connectivity analyses. NeuroImage 173:610–622

    Article  Google Scholar 

  • Whittingstall K, Stroink G, Gates L, Connolly J, Finley A (2003) Effects of dipole position, orientation and noise on the accuracy of EEG source localization. Biomed Eng Online 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann Math Stat 9(1):60–62

    Article  Google Scholar 

  • Winkler I, Panknin D, Bartz D, Müller KR, Haufe S (2016) Validity of time reversal for testing granger causality. IEEE Trans Signal Process 64(11):2746–2760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Marinazzo.

Additional information

Handling Editor: Jorge Javier Riera.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published together in Brain Topography on the “Special Issue: Controversies in EEG Source Analysis”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10545 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anzolin, A., Presti, P., Van De Steen, F. et al. Quantifying the Effect of Demixing Approaches on Directed Connectivity Estimated Between Reconstructed EEG Sources. Brain Topogr 32, 655–674 (2019). https://doi.org/10.1007/s10548-019-00705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-019-00705-z

Keywords

Navigation