Skip to main content
Log in

Aberrancies of Brain Network Structures in Patients with Anosmia

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Patients with anosmia exhibit structural and functional brain abnormalities. The present study explored changes in brain white matter (WM) in non-neurodegenerative anosmia using diffusion-tensor-based network analysis. Twenty patients with anosmia and sixteen healthy controls were recruited in the cross-sectional, case–control study. Participants underwent olfactory tests (orthonasal and retronasal), neuropsychological assessment (cognitive function and depressive symptoms) and diffusion tensor imaging measurement. Tract-Based Spatial Statistics, graph theoretical analysis and Network-Based Statistics were used to explore the white matter. There was no significant difference in fractional anisotropy (FA) between patients and controls. In global network topological properties comparisons, patients exhibited higher γ and λ levels than controls, and both groups satisfied the criteria of small-world (σ > 1). In local network topological properties, patients had reduced betweenness, degree and efficiency (global and local), as well as increased shortest path length and cluster coefficient in olfactory-related brain areas (anterior cingulum, lenticular nucleus, putamen, hippocampus, amygdala, caudate nucleus, orbito-frontal gyrus). Olfactory threshold scores and the retronasal score were negatively correlated with γ and λ, and the retronasal score was positively correlated with FA values in certain WM tracts, i.e. middle cerebellar peduncle, right inferior cerebellar peduncle, left inferior cerebellar peduncle, right cerebral peduncle, left cerebral peduncle, left cingulum (cingulate gyrus), right cingulum (hippocampus), superior fronto-occipital fasciculus, and, left tapetum. Patients with anosmia demonstrated relevant WM network dysfunction though their structural integrity remained intact. Their retronasal olfaction deficits revealed to be more strongly associated with WM alterations compared with orthonasal olfactory scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck AT, Steer RA, Carbin MG (1988) Psychometric properties of the beck depression inventory: twenty-five years of evaluation. Clin Psychol Rev 8:77–100

    Article  Google Scholar 

  • Bitter T, Bruderle J, Gudziol H, Burmeister HP, Gaser C, Guntinas-Lichius O (2010a) Gray and white matter reduction in hyposmic subjects—a voxel-based morphometry study. Brain Res 1347:42–47

    Article  CAS  PubMed  Google Scholar 

  • Bitter T, Gudziol H, Burmeister HP, Mentzel HJ, Guntinas-Lichius O, Gaser C (2010b) Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses 35:407–415

    Article  PubMed  Google Scholar 

  • Bonanno L, Marino S, De Salvo S, Ciurleo R, Costa A, Bruschetta D et al (2017) Role of diffusion tensor imaging in the diagnosis and management of post-traumatic anosmia. Brain Inj 31:1964–1968

    Article  PubMed  Google Scholar 

  • Chen B, Zhong X, Mai N, Peng Q, Wu Z, Ouyang C et al (2018) Cognitive impairment and structural abnormalities in late life depression with olfactory identification impairment: an alzheimer's disease-like pattern. Int J Neuropsychopharmacol 21:640–648

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross DJ, Anzai Y, Petrie EC, Martin N, Richards TL, Maravilla KR et al (2013) Loss of olfactory tract integrity affects cortical metabolism in the brain and olfactory regions in aging and mild cognitive impairment. J Nucl Med 54:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42

    PubMed  PubMed Central  Google Scholar 

  • Fjaeldstad A, Fernandes HM, Van Hartevelt TJ, Gleesborg C, Moller A, Ovesen T et al (2017) Brain fingerprints of olfaction: a novel structural method for assessing olfactory cortical networks in health and disease. Sci Rep 7:42534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellrich J, Han P, Manesse C, Betz A, Junghanns A, Raue C et al (2018) Brain volume changes in hyposmic patients before and after olfactory training. Laryngoscope 128:1531–1536

    Article  PubMed  Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC et al (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536

    Article  PubMed  Google Scholar 

  • Gullmar D, Seeliger T, Gudziol H, Teichgraber U, Reichenbach JR, Guntinas-Lichius O et al (2017) Improvement of olfactory function after sinus surgery correlates with white matter properties measured by diffusion tensor imaging. Neuroscience 360:190–196

    Article  PubMed  CAS  Google Scholar 

  • Haehner A, Schopf V, Loureiro A, Linn J, Reichmann H, Hummel T et al (2018) Substantia nigra fractional anisotropy changes confirm the PD at-risk status of patients with idiopathic smell loss. Parkinsonism Relat Disord 50:113–116

    Article  PubMed  Google Scholar 

  • Han P, Whitcroft KL, Fischer J, Gerber J, Cuevas M, Andrews P et al (2017) Olfactory brain gray matter volume reduction in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 7:551–556

    Article  PubMed  Google Scholar 

  • Han P, Winkler N, Hummel C, Hahner A, Gerber J, Hummel T (2018) Alterations of brain gray matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury. J Neurotrauma 35:2632–2640

    Article  PubMed  Google Scholar 

  • Han P, Zang Y, Akshita Y, Hummel T (2019) Magnetic resonance imaging of human olfactory dysfunction. Brain Topogr

  • Heilmann S, Strehle G, Rosenheim K, Damm M, Hummel T (2002) Clinical assessment of retronasal olfactory function. Arch Otolaryngol Head Neck Surg 128:414–418

    Article  PubMed  Google Scholar 

  • Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the "Sniffin' Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243

    Article  CAS  PubMed  Google Scholar 

  • Karstensen HG, Vestergaard M, Baare W, Skimminge A, Djurhuus B, Ellefsen B et al (2018) Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions. Brain Imaging Behav 12:1569–1582

    Article  PubMed  Google Scholar 

  • Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf S (1996) "Sniffin' sticks": screening of olfactory performance. Rhinology 34:222

    CAS  PubMed  Google Scholar 

  • Koirala N, Anwar AR, Ciolac D, Glaser M, Pintea B, Deuschl G et al (2019) Alterations in white matter network and microstructural integrity differentiate Parkinson's disease patients and healthy subjects. Front Aging Neurosci 11:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699

    Article  PubMed  Google Scholar 

  • Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Article  CAS  PubMed  Google Scholar 

  • Nir TM, Jahanshad N, Toga AW, Bernstein MA, Jack CJ, Weiner MW et al (2015) Connectivity network measures predict volumetric atrophy in mild cognitive impairment. Neurobiol Aging 36(Suppl 1):S113–S120

    Article  PubMed  Google Scholar 

  • Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    Article  PubMed  Google Scholar 

  • Oleszkiewicz A, Park D, Resler K, Draf J, Schulze A, Zang Y et al (2019) Quality of life in patients with olfactory loss is better predicted by flavor identification than by orthonasal olfactory function. Chem Senses 44:371–377

    Article  PubMed  Google Scholar 

  • Roberts RO, Christianson TJ, Kremers WK, Mielke MM, Machulda MM, Vassilaki M et al (2016) Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol 73:93–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Rottstadt F, Han P, Weidner K, Schellong J, Wolff-Stephan S, Strauss T et al (2018) Reduced olfactory bulb volume in depression—a structural moderator analysis. Hum Brain Mapp 39:2573–2582

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura B, Baggio HC, Solana E, Palacios EM, Vendrell P, Bargallo N et al (2013) Neuroanatomical correlates of olfactory loss in normal aged subjects. Behav Brain Res 246:148–153

    Article  PubMed  Google Scholar 

  • Shah C, Liu J, Lv P, Sun H, Xiao Y, Liu J et al (2018) Age related changes in topological properties of brain functional network and structural connectivity. Front Neurosci 12:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Small DM, Gerber JC, Mak YE, Hummel T (2005) Differential neural responses evoked by orthonasal versus retronasal odorant perception in humans. Neuron 47:593–605

    Article  CAS  PubMed  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  PubMed  Google Scholar 

  • Sreenivasan K, Zhuang X, Banks SJ, Mishra V, Yang Z, Deshpande G et al (2017) Olfactory network differences in master sommeliers: connectivity analysis using granger causality and graph theoretical approach. Brain Connect 7:123–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wattendorf E, Welge-Lussen A, Fiedler K, Bilecen D, Wolfensberger M, Fuhr P et al (2009) Olfactory impairment predicts brain atrophy in Parkinson's disease. J Neurosci 29:15410–15413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Woodward MR, Dwyer MG, Bergsland N, Hagemeier J, Zivadinov R, Benedict RH et al (2017) Olfactory identification deficit predicts white matter tract impairment in Alzheimer's disease. Psychiatry Res Neuroimaging 266:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu C, Huang L, Tan H, Wang Y, Zheng H, Kong L et al (2016) Diffusion tensor imaging and MR spectroscopy of microstructural alterations and metabolite concentration changes in the auditory neural pathway of pediatric congenital sensorineural hearing loss patients. Brain Res 1639:228–234

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Pinto JM, Yi X, Li L, Peng P, Wei Y (2014) Gray matter volume reduction of olfactory cortices in patients with idiopathic olfactory loss. Chem Senses 39:755–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao L, Yi X, Pinto JM, Yuan X, Guo Y, Liu Y et al (2018) Olfactory cortex and Olfactory bulb volume alterations in patients with post-infectious Olfactory loss. Brain Imaging Behav 12:1355–1362

    Article  PubMed  Google Scholar 

  • Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. Neuroimage 53:1197–1207

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by a Grant from the Deutsche Forschungsgemeinschaft to TH (DFG HU411/18-1).

Author information

Authors and Affiliations

Authors

Contributions

Dr. BCH: conception and design, analysis and interpretation of data; drafted the article; gave final approval of the version to be published. Dr. JA: acquisition of data, revised the manuscript critically for important intellectual content, gave final approval of the version to be published. Dr. PH: revised the manuscript critically for important intellectual content, gave final approval of the version to be published important intellectual content. Dr. DT: Revised the manuscript critically for important intellectual content, gave final approval of the version to be published important intellectual content. Dr. HHK: conception and design, acquisition of data, interpretation of data; revised the. Pro. TH: conception and design, acquisition of data, analysis and interpretation of data; revised the manuscript critically for important intellectual content; gave final approval of the version to be published.

Corresponding author

Correspondence to Ben Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christoph M. Michel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Akshita, J., Han, P. et al. Aberrancies of Brain Network Structures in Patients with Anosmia. Brain Topogr 33, 403–411 (2020). https://doi.org/10.1007/s10548-020-00769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-020-00769-2

Keywords

Navigation