Skip to main content

Advertisement

Log in

Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose Per2, a core circadian clock gene, has tumor suppressor properties and is mutated or down regulated in human breast cancers. We have manipulated the expression of this gene in vitro and in vivo to more fully understand how the Per2 clock gene product affects cancer growth. Methods We used siRNA and shRNA to down regulate Per2 expression in vitro and in vivo and measured cancer cell proliferation, tumor growth rate and several molecular pathways relevant to cancer growth and their circadian organizations. All statistical tests were two-sided. Results Down regulation of functional Per2 gene expression increases Cyclin D and Cyclin E levels and doubles in vitro breast cancer cell proliferation (P < 0.05). Down regulation of Per2 also accelerates in vivo tumor growth and doubles the daily amplitude of the tumor growth rhythm (P < 0.05). Conclusions The clock gene Per2 exerts its tumor suppressor function in a circadian time dependent manner. Therefore, Per2 and perhaps other clock genes represent a new class of potential therapeutic targets whose manipulation will modulate cancer growth and cancer cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 42(3):204–220. doi:10.1016/S0165-0173(03)00171-1

    Article  PubMed  CAS  Google Scholar 

  2. Vansteensel MJ, Michel S, Meijer JH (2008) Organization of cell and tissue circadian pacemakers: a comparison among species. Brain Res Rev 58(1):18–47

    Article  PubMed  Google Scholar 

  3. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941. doi:10.1038/nature00965

    Article  PubMed  CAS  Google Scholar 

  4. Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8(10):790–802. doi:10.1038/nrn2215

    Article  PubMed  CAS  Google Scholar 

  5. Liu AC et al (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616. doi:10.1016/j.cell.2007.02.047

    Article  PubMed  CAS  Google Scholar 

  6. Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21(6):470–481. doi:10.1177/0748730406294316

    Article  PubMed  CAS  Google Scholar 

  7. Lee C et al (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107(7):855–867. doi:10.1016/S0092-8674(01)00610-9

    Article  PubMed  CAS  Google Scholar 

  8. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Article  PubMed  CAS  Google Scholar 

  9. Schibler U (2007) The daily timing of gene expression and physiology in mammals. Dialogues Clin Neurosci 9(3):257–272

    PubMed  Google Scholar 

  10. Oishi K et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278(42):41519–41527. doi:10.1074/jbc.M304564200

    Article  PubMed  CAS  Google Scholar 

  11. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441. doi:10.1146/annurev.genom.5.061903.175925

    Article  PubMed  CAS  Google Scholar 

  12. Buchi K et al (1991) Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 101:410–415

    PubMed  CAS  Google Scholar 

  13. Bjarnason GA et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801

    PubMed  CAS  Google Scholar 

  14. Smaaland R et al (1991) DNA synthesis in human bone marrow is circadian stage dependent. Blood 77:2603–2611

    PubMed  CAS  Google Scholar 

  15. Matsuo T et al (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259. doi:10.1126/science.1086271

    Article  PubMed  CAS  Google Scholar 

  16. You S et al (2005) Daily coordination of cancer growth and circadian clock gene expression. Breast Cancer Res Treat 91(1):47–60. doi:10.1007/s10549-004-6603-z

    Article  PubMed  CAS  Google Scholar 

  17. Wood PA et al (2006) Circadian clock coordinates cancer cell cycle progression, thymidylate synthase, and 5-fluorouracil therapeutic index. Mol Cancer Ther 5(8):2023–2033. doi:10.1158/1535-7163.MCT-06-0177

    Article  PubMed  CAS  Google Scholar 

  18. Schernhammer ES et al (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93(20):1563–1568

    Article  PubMed  CAS  Google Scholar 

  19. Schernhammer ES et al (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95(11):825–828

    PubMed  Google Scholar 

  20. Viswanathan AN, Hankinson SE, Schernhammer ES (2007) Night shift work and the risk of endometrial cancer. Cancer Res 67(21):10618–10622. doi:10.1158/0008-5472.CAN-07-2485

    Article  PubMed  CAS  Google Scholar 

  21. Sack RL et al (2007) Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 30(11):1460–1483

    PubMed  Google Scholar 

  22. Filipski E et al (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94(9):690–697

    PubMed  Google Scholar 

  23. Blask DE et al (2003) Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Breast Cancer Res Treat 79(3):313–320. doi:10.1023/A:1024030518065

    Article  PubMed  CAS  Google Scholar 

  24. Filipski E et al (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64(21):7879–7885. doi:10.1158/0008-5472.CAN-04-0674

    Article  PubMed  CAS  Google Scholar 

  25. Anisimov VN (2006) Light pollution, reproductive function and cancer risk. Neuroendocrinol Lett 27(1–2):35–52

    PubMed  CAS  Google Scholar 

  26. Ancoli-Israel S, Moore PJ, Jones V (2001) The relationship between fatigue and sleep in cancer patients: a review. Eur J Cancer Care (Engl) 10(4):245–255. doi:10.1046/j.1365-2354.2001.00263.x

    Article  CAS  Google Scholar 

  27. Sephton SE et al (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92(12):994–1000. doi:10.1093/jnci/92.12.994

    Article  PubMed  CAS  Google Scholar 

  28. Hrushesky WJ (1985) Circadian timing of cancer chemotherapy. Science 228(4695):73–75. doi:10.1126/science.3883493

    Article  PubMed  CAS  Google Scholar 

  29. Levin RD et al (2005) Circadian function in patients with advanced non-small-cell lung cancer. Br J Cancer 93(11):1202–1208. doi:10.1038/sj.bjc.6602859

    Article  PubMed  CAS  Google Scholar 

  30. Fu L et al (2002) The circadian gene Period 2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50. doi:10.1016/S0092-8674(02)00961-3

    Article  PubMed  CAS  Google Scholar 

  31. Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3(5):350–361. doi:10.1038/nrc1072

    Article  PubMed  CAS  Google Scholar 

  32. Sjoblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi:10.1126/science.1133427

    Article  PubMed  CAS  Google Scholar 

  33. Chen ST et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246. doi:10.1093/carcin/bgi075

    Article  PubMed  CAS  Google Scholar 

  34. Winter S et al (2007) Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9(10):797–800. doi:10.1593/neo.07595

    Article  PubMed  CAS  Google Scholar 

  35. Hua H et al (2007) Inhibition of tumorigenesis by intratumoral delivery of the circadian gene mPer2 in C57BL/6 mice. Cancer Gene Ther 14(9):815–818. doi:10.1038/sj.cgt.7701061

    Article  PubMed  CAS  Google Scholar 

  36. Gery S et al (2007) The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 26(57):7916–7920. doi:10.1038/sj.onc.1210585

    Article  PubMed  CAS  Google Scholar 

  37. Devroe E, Silver PA (2002) Retrovirus-delivered siRNA. BMC Biotechnol 2:15. doi:10.1186/1472-6750-2-15

    Article  PubMed  Google Scholar 

  38. Rubinson DA et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3):401–406. doi:10.1038/ng1117

    Article  PubMed  CAS  Google Scholar 

  39. Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10(20):1291–1294. doi:10.1016/S0960-9822(00)00758-2

    Article  PubMed  CAS  Google Scholar 

  40. Tsuchiya Y, Akashi M, Nishida E (2003) Temperature compensation and temperature resetting of circadian rhythms in mammalian cultured fibroblasts. Genes Cells 8(8):713–720. doi:10.1046/j.1365-2443.2003.00669.x

    Article  PubMed  CAS  Google Scholar 

  41. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937. doi:10.1016/S0092-8674(00)81199-X

    Article  PubMed  CAS  Google Scholar 

  42. Yagita K et al (2001) Molecular mechanisms of the biologic clock in cultured fibroblasts. Science 292:278–281. doi:10.1126/science.1059542

    Article  PubMed  CAS  Google Scholar 

  43. Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382. doi:10.1016/j.molcel.2006.03.038

    Article  PubMed  CAS  Google Scholar 

  44. Gupta S et al (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA 101(7):1927–1932. doi:10.1073/pnas.0306111101

    Article  PubMed  CAS  Google Scholar 

  45. Liu XD et al (2004) Short hairpin RNA and retroviral vector-mediated silencing of p53 in mammalian cells. Biochem Biophys Res Commun 324(4):1173–1178. doi:10.1016/j.bbrc.2004.09.190

    Article  PubMed  CAS  Google Scholar 

  46. Hao DL et al (2005) Knockdown of human p53 gene expression in 293-T cells by retroviral vector-mediated short hairpin RNA. Acta Biochim Biophys Sin (Shanghai) 37(11):779–783. doi:10.1111/j.1745-7270.2005.00107.x

    Article  CAS  Google Scholar 

  47. Jia F, Zhang YZ, Liu CM (2006) A retrovirus-based system to stably silence hepatitis B virus genes by RNA interference. Biotechnol Lett 28(20):1679–1685. doi:10.1007/s10529-006-9138-z

    Article  PubMed  CAS  Google Scholar 

  48. Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA (2008) Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumors with 6p22 amplification. Oncogene 27(19):2716–2727

    Article  PubMed  CAS  Google Scholar 

  49. Wood PA, Hrushesky WJ, Klevecz R (1998) Distinct circadian time structures characterize myeloid and erythroid progenitor and multipotential cell clonogenicity as well as marrow precursor proliferation dynamics. Exp Hematol 26(6):523–533

    PubMed  CAS  Google Scholar 

  50. Nagoshi E et al (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto T et al (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18. doi:10.1186/1471-2199-5-18

    Article  PubMed  CAS  Google Scholar 

  52. Alvarez JD, Sehgal A (2005) The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms 20(2):111–121. doi:10.1177/0748730404274078

    Article  PubMed  CAS  Google Scholar 

  53. Hrushesky WJ, Lannin D, Haus E (1998) Evidence for an ontogenetic basis for circadian coordination of cancer cell proliferation. J Natl Cancer Inst 90(19):1480–1484. doi:10.1093/jnci/90.19.1480

    Article  PubMed  CAS  Google Scholar 

  54. Gorbacheva VY et al (2005) Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proc Natl Acad Sci USA 102:3407–3412. doi:10.1073/pnas.0409897102

    Article  PubMed  CAS  Google Scholar 

  55. Sothern RB et al (1989) Control of a murine plasmacytoma with doxorubicin-cisplatin: dependence on circadian stage of treatment. J Natl Cancer Inst 81(2):135–145. doi:10.1093/jnci/81.2.135

    Article  PubMed  CAS  Google Scholar 

  56. Levi F et al (2007) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Adv Drug Deliv Rev 59(9–10):1015–1035. doi:10.1016/j.addr.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  57. Wood PA, Hrushesky WJ (1996) Circadian rhythms and cancer chemotherapy. Crit Rev Eukaryot Gene Expr 6(4):299–343

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. M. Hrushesky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Wood, P.A., Oh, EY. et al. Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117, 423–431 (2009). https://doi.org/10.1007/s10549-008-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0133-z

Keywords

Navigation