Skip to main content

Advertisement

Log in

Genetic polymorphisms and breast cancer risk: evidence from meta-analyses, pooled analyses, and genome-wide association studies

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

To address the association between variants and breast cancer, an increasing number of articles on genetic association studies, genome-wide association studies (GWASs), and related meta- and pooled analyses have been published. Such studies have prompted an updated assessment of the associations between gene variants and breast cancer risk. We searched PubMed, Medline, and Web of Science and retrieved a total of 87 meta- and pooled analyses, which addressed the associations between 145 gene variants and breast cancer. Analyses met the following criteria: (1) breast cancer was the outcome, (2) the articles were all published in English, and (3) in the recent published meta- and pooled analyses, the analyses with more subjects were selected. Among the 145 variants, 46 were significantly associated with breast cancer and the other 99 (in 62 genes) were not significantly associated with breast cancer. The summary ORs for the 46 significant associations (P < 0.05) were further assessed by the method of false-positive report probability (FPRP). Our results demonstrated that 10 associations were noteworthy: CASP8 (D302H), CHEK2 (*1100delC), CTLA4 (+49G>A), FGFR2 (rs2981582, rs1219648, and rs2420946), HRAS (rare alleles), IL1B (rs1143627), LSP1 (rs3817198), and MAP3K1 (rs889312). In addition, eight GWASs were identified, in which 25 loci were obtained (14 in nine genes, six near a gene or genes, and five intergenic loci). Of the 25 SNPs, 20 were noteworthy: C6orf97 (rs2046210 and rs3757318), FGFR2 (rs2981579, rs1219648, and rs2981582), LSP1 (rs909116), RNF146 (rs2180341), SLC4A7 (rs4973768), MRPS30 (rs7716600), TOX3 (rs3803662 and rs4784227), ZNF365 (rs10995190), rs889312, rs614367, rs13281615, rs13387042, rs11249433, rs1011970, rs614367, and rs1562430. In summary, in this review of genetic association studies, 31.7% of the gene-variant breast cancer associations were significant, and 21.7% of these significant associations were noteworthy. However, in GWASs, 80% of the significant associations were noteworthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. Cancer J Clin 55:74–108

    Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao YP, Xu JQ et al (2008) Cancer statistics, 2008. Cancer J Clin 58:71–96. doi:10.3322/ca.2007.0010

    Google Scholar 

  3. Pharoah PDP, Dunning AM, Ponder BAJ, Easton DF (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4:850–860. doi:10.1038/nrc1476

    PubMed  CAS  Google Scholar 

  4. Thompson D, Easton D (2004) The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia 9:221–236

    PubMed  Google Scholar 

  5. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149. doi:10.1016/j.critrevonc.2006.12.004

    PubMed  CAS  Google Scholar 

  6. Ioannidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309

    PubMed  CAS  Google Scholar 

  7. Burton PR, Hansell AL, Fortier I, Manolio TA, Khoury MJ et al (2009) Size matters: just how big is BIG? Quantifying realistic sample size requirements for human genome epidemiology. Int J Epidemiol 38:263–273. doi:10.1093/Ije/Dyn147

    PubMed  Google Scholar 

  8. Gordon D, Finch SJ (2005) Factors affecting statistical power in the detection of genetic association. J Clin Invest 115:1408–1418

    PubMed  CAS  Google Scholar 

  9. Glass GV (1976) Primary, secondary and meta-analysis of research. Educ Res 5:3–8. doi:10.3102/0013189X005010003

    Google Scholar 

  10. Blettner M, Sauerbrei W, Schlehofer B, Scheuchenpflug T, Friedenreich C (1999) Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol 28:1–9

    PubMed  CAS  Google Scholar 

  11. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093. doi:10.1038/nature05887

    PubMed  CAS  Google Scholar 

  12. Dunning AM, Healey CS, Pharoah PDP, Teare MD, Ponder BAJ et al (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8:843–854

    PubMed  CAS  Google Scholar 

  13. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR et al (2008) Genetic susceptibility to cancer—the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    PubMed  CAS  Google Scholar 

  14. Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118. doi:10.1038/nrg1522

    PubMed  CAS  Google Scholar 

  15. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108. doi:10.1038/nrg1521

    PubMed  CAS  Google Scholar 

  16. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369. doi:10.1038/nrg2344

    PubMed  CAS  Google Scholar 

  17. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367. doi:10.1073/pnas.0903103106

    PubMed  CAS  Google Scholar 

  18. Hindorff LA, Junkins HA, Hall PN, Mehta JP, Manolio TA. A catalog of published genome-wide association studies. Available at: www.genome.gov/gwastudies

  19. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Google Scholar 

  20. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    CAS  Google Scholar 

  21. Wacholder S, Chanock S, Garcia-Closas M, El ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442. doi:10.1093/jnci/djh075

    PubMed  Google Scholar 

  22. Sergentanis TN, Economopoulos KP (2010) Association of two CASP8 polymorphisms with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 120:229–234. doi:10.1007/s10549-009-0471-5

    PubMed  CAS  Google Scholar 

  23. Li N, Dong J, Hu Z, Shen H, Dai M (2010) Potentially functional polymorphisms in ESR1 and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:177–184. doi:10.1007/s10549-009-0532-9

    PubMed  CAS  Google Scholar 

  24. Yu KD, Rao NY, Chen AX, Fan L, Yang C et al (2011) A systematic review of the relationship between polymorphic sites in the estrogen receptor-beta (ESR2) gene and breast cancer risk. Breast Cancer Res Treat 126:37–45. doi:10.1007/s10549-010-0891-2

    PubMed  CAS  Google Scholar 

  25. Wang Z, Cui D, Lu W (2010) NBS1 8360G>C polymorphism is associated with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 123:557–561. doi:10.1007/s10549-010-0772-8

    PubMed  CAS  Google Scholar 

  26. Yao L, Fang F, Zhong Y, Yu L (2010) The association between two polymorphisms of eNOS and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:223–227. doi:10.1007/s10549-010-0800-8

    PubMed  CAS  Google Scholar 

  27. Zhang Z, Wang M, Wu D, Tong N, Tian Y (2010) P53 codon 72 polymorphism contributes to breast cancer risk: a meta-analysis based on 39 case-control studies. Breast Cancer Res Treat 120:509–517. doi:10.1007/s10549-009-0480-4

    PubMed  CAS  Google Scholar 

  28. Qiu LX, Mao C, Yao L, Yu KD, Zhan P et al (2010) XRCC3 5′-UTR and IVS5-14 polymorphisms and breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 122:489–493. doi:10.1007/s10549-009-0726-1

    PubMed  CAS  Google Scholar 

  29. Lu PH, Wei MX, Yang J, Liu X, Tao GQ et al (2011) Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis. Breast Cancer Res Treat 125:537–543. doi:10.1007/s10549-010-1033-6

    PubMed  Google Scholar 

  30. The Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98:1382–1396. doi:10.1093/jnci/djj374

    Google Scholar 

  31. Garcia-Closas M, Kristensen V, Langerod A, Qi Y, Yeager M et al (2007) Common genetic variation in TP53 and its flanking genes, WDR79 and ATP1B2, and susceptibility to breast cancer. Int J Cancer 121:2532–2538. doi:10.1002/ijc.22985

    PubMed  CAS  Google Scholar 

  32. Hao YJ, Montiel R, Li BH, Huang EY, Zeng LW et al (2010) Association between androgen receptor gene CAG repeat polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:815–820. doi:10.1007/s10549-010-0907-y

    PubMed  CAS  Google Scholar 

  33. Ding H, Mao C, Li SM, Liu Q, Lin L et al (2011) Lack of association between ATM C.1066-6T>G mutation and breast cancer risk: a meta-analysis of 8,831 cases and 4,957 controls. Breast Cancer Res Treat 125:473–477. doi:10.1007/s10549-010-0977-x

    PubMed  CAS  Google Scholar 

  34. Gao LB, Pan XM, Sun H, Wang X, Rao L et al (2010) The association between ATM D1853N polymorphism and breast cancer susceptibility: a meta-analysis. J Exp Clin Cancer Res 29. doi:10.1186/1756-9966-29-117

  35. Lu PH, Wei MX, Si SP, Liu X, Shen W et al (2010) Association between polymorphisms of the ataxia telangiectasia mutated gene and breast cancer risk: evidence from the current studies. Breast Cancer Res Treat. doi:10.1007/s10549-010-1081-y

  36. Sun HM, Bai J, Chen F, Jin Y, Yu Y et al (2011) Lack of an association between AURKA T91A polymorphisms and breast cancer: a meta-analysis involving 32,141 subjects. Breast Cancer Res Treat 125:175–179. doi:10.1007/s10549-010-0936-6

    PubMed  CAS  Google Scholar 

  37. Gaudet MM, Milne RL, Cox A, Camp NJ, Goode EL et al (2009) Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 18:1610–1616. doi:10.1158/1055-9965.EPI-08-0745

    PubMed  CAS  Google Scholar 

  38. Qiu LX, Yao L, Xue K, Zhang JA, Mao C et al (2010) BRCA2 N372H polymorphism and breast cancer susceptibility: a meta-analysis involving 44,903 subjects. Breast Cancer Res Treat 123:487–490. doi:10.1007/s10549-010-0767-5

    PubMed  CAS  Google Scholar 

  39. Wang GY, Lu CQ, Zhang RM, Hu XH, Luo ZW (2008) The E-cadherin gene polymorphism 160C→A and cancer risk: a HuGE review and meta-analysis of 26 case-control studies. Am J Epidemiol 167:7–14. doi:10.1093/aje/kwm264

    PubMed  Google Scholar 

  40. Mao C, Wang XW, Qiu LX, Liao RY, Ding H et al (2010) Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: a meta-analysis of 25,627 cases and 34,222 controls. Breast Cancer Res Treat 121:719–725. doi:10.1007/s10549-009-0650-4

    PubMed  CAS  Google Scholar 

  41. Yao L, Fang F, Wu Q, Yang Z, Zhong Y et al (2010) No association between CYP17 T-34C polymorphism and breast cancer risk: a meta-analysis involving 58,814 subjects. Breast Cancer Res Treat 122:221–227. doi:10.1007/s10549-009-0679-4

    PubMed  CAS  Google Scholar 

  42. Ma X, Qi X, Chen C, Lin H, Xiong H et al (2010) Association between CYP19 polymorphisms and breast cancer risk: results from 10,592 cases and 11,720 controls. Breast Cancer Res Treat 122:495–501. doi:10.1007/s10549-009-0693-6

    PubMed  CAS  Google Scholar 

  43. Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:459–469. doi:10.1007/s10549-009-0694-5

    PubMed  CAS  Google Scholar 

  44. Qiu LX, Yao L, Mao C, Yu KD, Zhan P et al (2010) Lack of association of CYP1A2-164 A/C polymorphism with breast cancer susceptibility: a meta-analysis involving 17,600 subjects. Breast Cancer Res Treat 122:521–525. doi:10.1007/s10549-009-0731-4

    PubMed  CAS  Google Scholar 

  45. Yao L, Fang F, Wu Q, Zhong Y, Yu L (2010) No association between CYP1B1 Val432Leu polymorphism and breast cancer risk: a meta-analysis involving 40,303 subjects. Breast Cancer Res Treat 122:237–242. doi:10.1007/s10549-009-0689-2

    PubMed  CAS  Google Scholar 

  46. Economopoulos KP, Sergentanis TN (2010) Three polymorphisms in cytochrome P450 1B1 (CYP1B1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:545–551. doi:10.1007/s10549-009-0728-z

    PubMed  CAS  Google Scholar 

  47. Pabalan N, Francisco-Pabalan O, Sung L, Jarjanazi H, Ozcelik H (2010) Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer. Breast Cancer Res Treat 124:531–541. doi:10.1007/s10549-010-0863-6

    PubMed  CAS  Google Scholar 

  48. Zhang Z, Xue H, Gong W, Wang M, Yuan L et al (2009) FAS promoter polymorphisms and cancer risk: a meta-analysis based on 34 case-control studies. Carcinogenesis 30:487–493. doi:10.1093/carcin/bgp016

    PubMed  CAS  Google Scholar 

  49. Liu Y, Wen QJ, Yin Y, Lu XT, Pu SH et al (2009) FASLG polymorphism is associated with cancer risk. Eur J Cancer 45:2574–2578. doi:10.1016/j.ejca.2009.04.001

    PubMed  CAS  Google Scholar 

  50. Garcia-Closas M, Troester MA, Qi Y, Langerod A, Yeager M et al (2007) Common genetic variation in GATA-binding protein 3 and differential susceptibility to breast cancer by estrogen receptor alpha tumor status. Cancer Epidemiol Biomarkers Prev 16:2269–2275. doi:10.1158/1055-9965.EPI-07-0449

    PubMed  CAS  Google Scholar 

  51. Johnatty SE, Couch FJ, Fredericksen Z, Tarrell R, Spurdle AB et al (2009) No evidence that GATA3 rs570613 SNP modifies breast cancer risk. Breast Cancer Res Treat 117:371–379. doi:10.1007/s10549-008-0257-1

    PubMed  CAS  Google Scholar 

  52. Hu J, Zhou GW, Wang N, Wang YJ (2010) GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:425–431. doi:10.1007/s10549-010-0841-z

    PubMed  CAS  Google Scholar 

  53. Sergentanis TN, Economopoulos KP (2010) GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:195–202. doi:10.1007/s10549-009-0520-0

    PubMed  CAS  Google Scholar 

  54. Zhao T, Lv J, Zhao J, Nzekebaloudou M (2009) Hypoxia-inducible factor-1alpha gene polymorphisms and cancer risk: a meta-analysis. J Exp Clin Cancer Res 28:159. doi:10.1186/1756-9966-28-159

    PubMed  CAS  Google Scholar 

  55. Yao L, Cao LH, Qiu LX, Yu L (2010) The association between HSD17B1 Ser312Gly polymorphism and breast cancer risk: a meta-analysis including 31,053 subjects. Breast Cancer Res Treat 123:577–580. doi:10.1007/s10549-010-0784-4

    PubMed  CAS  Google Scholar 

  56. Chen X, Guan J, Song Y, Chen P, Zheng H et al (2008) IGF-I (CA) repeat polymorphisms and risk of cancer: a meta-analysis. J Hum Genet 53:227–238. doi:10.1007/s10038-007-0241-3

    PubMed  CAS  Google Scholar 

  57. Li L, Huang X, Huo K (2010) IGFBP3 polymorphisms and risk of cancer: a meta-analysis. Mol Biol Rep 37:127–140. doi:10.1007/s11033-009-9552-0

    PubMed  Google Scholar 

  58. Liu X, Wang Z, Yu J, Lei G, Wang S (2010) Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a meta-analysis. Breast Cancer Res Treat 124:821–825. doi:10.1007/s10549-010-0910-3

    PubMed  CAS  Google Scholar 

  59. Yu KD, Di GH, Fan L, Chen AX, Yang C et al (2010) Lack of an association between a functional polymorphism in the interleukin-6 gene promoter and breast cancer risk: a meta-analysis involving 25,703 subjects. Breast Cancer Res Treat 122:483–488. doi:10.1007/s10549-009-0706-5

    PubMed  CAS  Google Scholar 

  60. Yu KD, Chen AX, Yang C, Fan L, Huang AJ et al (2010) The associations between two polymorphisms in the interleukin-10 gene promoter and breast cancer risk. Breast Cancer Res Treat. doi:10.1007/s10549-010-1133-3

  61. Zhou P, Du L, Lv G, Yu X, Gu Y et al (2010) Current evidence on the relationship between four polymorphisms in the matrix metalloproteinases (MMP) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. doi:10.1007/s10549-010-1294-0

  62. Qiu LX, Yao L, Mao C, Chen B, Zhan P et al (2010) Lack of association between MnSOD Val16Ala polymorphism and breast cancer risk: a meta-analysis involving 58,448 subjects. Breast Cancer Res Treat 123:543–547. doi:10.1007/s10549-010-0777-3

    PubMed  CAS  Google Scholar 

  63. Chen Y, Pei J (2011) Possible risk modifications in the association between MnSOD Ala-9Val polymorphism and breast cancer risk: subgroup analysis and evidence-based sample size calculation for a future trial. Breast Cancer Res Treat 125:495–504. doi:10.1007/s10549-010-0978-9

    PubMed  Google Scholar 

  64. Qi XW, Zhang F, Yang XH, Fan LJ, Zhang Y et al (2010) Transforming growth factor-beta 1 polymorphisms and breast cancer risk: a meta-analysis based on 27 case-control studies. Breast Cancer Res Treat 122:273–279. doi:10.1007/s10549-010-0847-6

    PubMed  CAS  Google Scholar 

  65. Colleran G, McInerney N, Rowan A, Barclay E, Jones AM et al (2010) The TGFBR1*6A/9A polymorphism is not associated with differential risk of breast cancer. Breast Cancer Res Treat 119:437–442. doi:10.1007/s10549-009-0395-0

    PubMed  CAS  Google Scholar 

  66. Shen C, Sun H, Sun D, Xu L, Zhang X et al (2010) Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. doi:10.1007/s10549-010-1184-5

  67. Chen MB, Wu XY, Shen W, Wei MX, Li C et al (2010) Association between polymorphisms of trinucleotide repeat containing 9 gene and breast cancer risk: evidence from 62,005 subjects. Breast Cancer Res Treat. doi:10.1007/s10549-010-1114-6

  68. Hu Z, Li X, Yuan R, Ring BZ, Su L (2010) Three common TP53 polymorphisms in susceptibility to breast cancer, evidence from meta-analysis. Breast Cancer Res Treat 120:705–714. doi:10.1007/s10549-009-0488-9

    PubMed  CAS  Google Scholar 

  69. Wang J, Wang B, Bi J, Di J (2010) The association between two polymorphisms in the TYMS gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. doi:10.1007/s10549-010-1314-0

  70. Yao L, Qiu LX, Yu L, Yang Z, Yu XJ et al (2010) The association between TA-repeat polymorphism in the promoter region of UGT1A1 and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:879–882. doi:10.1007/s10549-010-0742-1

    PubMed  CAS  Google Scholar 

  71. Raimondi S, Johansson H, Maisonneuve P, Gandini S (2009) Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 30:1170–1180. doi:10.1093/carcin/bgp103

    PubMed  CAS  Google Scholar 

  72. Qiu LX, Zhang J, Zhu XD, Zheng CL, Sun S et al (2010) The p21 Ser31Arg polymorphism and breast cancer risk: a meta-analysis involving 51,236 subjects. Breast Cancer Res Treat 124:475–479. doi:10.1007/s10549-010-0858-3

    PubMed  CAS  Google Scholar 

  73. Yang DS, Sung HJ, Woo OH, Park KH, Woo SU et al (2010) Association of a progesterone receptor gene +331G/A polymorphism with breast cancer risk: a meta-analysis. Cancer Genet Cytogenet 196:194–197. doi:10.1016/j.cancergencyto.2009.10.005

    PubMed  CAS  Google Scholar 

  74. Yu KD, Chen AX, Yang C, Qiu LX, Fan L et al (2010) Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:251–257. doi:10.1007/s10549-009-0688-3

    PubMed  CAS  Google Scholar 

  75. Qiu LX, Zhang J, Li WH, Zhang QL, Yu H et al (2010) Lack of association between methylenetetrahydrofolate reductase gene A1298C polymorphism and breast cancer susceptibility. Mol Biol Rep. doi:10.1007/s11033-010-0361-2

  76. Lu MP, Wang F, Qiu JR (2010) Methionine synthase A2756G polymorphism and breast cancer risk: a meta-analysis involving 18,953 subjects. Breast Cancer Res Treat 123:213–217. doi:10.1007/s10549-010-0755-9

    PubMed  CAS  Google Scholar 

  77. Hu J, Zhou GW, Wang N, Wang YJ (2010) MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:779–784. doi:10.1007/s10549-010-0892-1

    PubMed  CAS  Google Scholar 

  78. Zhang J, Qiu LX, Wang ZH, Wang JL, He SS et al (2010) NAT2 polymorphisms combining with smoking associated with breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 123:877–883. doi:10.1007/s10549-010-0807-1

    PubMed  Google Scholar 

  79. Yuan W, Xu L, Chen W, Wang L, Fu Z et al (2011) Evidence on the association between NQO1 Pro187Ser polymorphism and breast cancer risk in the current studies. Breast Cancer Res Treat 125:467–472

    PubMed  Google Scholar 

  80. Gu D, Wang M, Zhang Z, Chen J (2010) Lack of association between the hOGG1 Ser326Cys polymorphism and breast cancer risk: evidence from 11 case-control studies. Breast Cancer Res Treat 122:527–531. doi:10.1007/s10549-009-0723-4

    PubMed  CAS  Google Scholar 

  81. Tang C, Chen N, Wu M, Yuan H, Du Y (2009) Fok1 polymorphism of vitamin D receptor gene contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 117:391–399. doi:10.1007/s10549-008-0262-4

    PubMed  CAS  Google Scholar 

  82. Qiu LX, Wang K, Yang S, Mao C, Zhao L et al (2010) Current evidences on vascular endothelial growth factor polymorphisms and breast cancer susceptibility. Mol Biol Rep. doi:10.1007/s11033-010-0579-z

  83. Francisco G, Menezes PR, Eluf-Neto J, Chammas R (2008) XPC polymorphisms play a role in tissue-specific carcinogenesis: a meta-analysis. Eur J Hum Genet 16:724–734. doi:10.1038/ejhg.2008.6

    PubMed  CAS  Google Scholar 

  84. Li H, Ha TC, Tai BC (2009) XRCC1 gene polymorphisms and breast cancer risk in different populations: a meta-analysis. Breast 18:183–191. doi:10.1016/j.breast.2009.03.008

    PubMed  CAS  Google Scholar 

  85. Yu KD, Chen AX, Qiu LX, Fan L, Yang C et al (2010) XRCC2 Arg188His polymorphism is not directly associated with breast cancer risk: evidence from 37,369 subjects. Breast Cancer Res Treat 123:219–225. doi:10.1007/s10549-010-0753-y

    PubMed  CAS  Google Scholar 

  86. Garcia-Closas M, Egan KM, Newcomb PA, Brinton LA, Titus-Ernstoff L et al (2006) Polymorphisms in DNA double-strand break repair genes and risk of breast cancer: two population-based studies in USA and Poland, and meta-analyses. Hum Genet 119:376–388. doi:10.1007/s00439-006-0135-z

    PubMed  CAS  Google Scholar 

  87. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A et al (2010) Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42:504–507. doi:10.1038/ng.586

    PubMed  CAS  Google Scholar 

  88. Zheng W, Long J, Gao YT, Li C, Zheng Y et al (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328. doi:10.1038/ng.318

    PubMed  CAS  Google Scholar 

  89. Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22 33. Proc Natl Acad Sci USA 105:4340–4345. doi:10.1073/pnas.0800441105

    PubMed  CAS  Google Scholar 

  90. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869. doi:10.1038/ng2064

    PubMed  CAS  Google Scholar 

  91. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S et al (2009) A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41:579–584. doi:10.1038/ng.353

    PubMed  CAS  Google Scholar 

  92. Li J, Humphreys K, Heikkinen T, Aittomaki K, Blomqvist C et al (2010) A combined analysis of genome-wide association studies in breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-010-1172-9

  93. Long J, Cai Q, Shu XO, Qu S, Li C et al (2010) Identification of a functional genetic variant at 16q12 1 for breast cancer risk: results from the Asia Breast Cancer Consortium. PLoS Genet 6:e1001002. doi:10.1371/journal.pgen.1001002

    PubMed  Google Scholar 

  94. Thomas DC, Clayton DG (2004) Betting odds and genetic associations. J Natl Cancer Inst 96:421–423. doi:10.1093/jnci/djh094

    PubMed  Google Scholar 

  95. Weischer M, Bojesen SE, Ellervik C, Tybjaerg-Hansen A, Nordestgaard BG (2008) CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol 26:542–548. doi:10.1200/JCO.2007.12.5922

    PubMed  Google Scholar 

  96. Qiu LX, Yao L, Yuan H, Mao C, Chen B et al (2010) IGFBP3 A-202C polymorphism and breast cancer susceptibility: a meta-analysis involving 33,557 cases and 45,254 controls. Breast Cancer Res Treat 122:867–871. doi:10.1007/s10549-010-0739-9

    PubMed  Google Scholar 

  97. Steffen J, Nowakowska D, Niwinska A, Czapczak D, Kluska A et al (2006) Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int J Cancer 119:472–475. doi:10.1002/Ijc.21853

    PubMed  CAS  Google Scholar 

  98. Haiman CA, Setiawan VW, Xia LY, Le Marchand L, Ingles SA et al (2007) A variant in the cytochrome p450 oxidoreductase gene is associated with breast cancer risk in African Americans. Cancer Res 67:3565–3568. doi:10.1158/0008-5472.CAN-06-4801

    PubMed  CAS  Google Scholar 

  99. Qiu LX, Yao L, Mao C, Chen B, Zhan P et al (2010) TGFB1 L10P polymorphism is associated with breast cancer susceptibility: evidence from a meta-analysis involving 47,817 subjects. Breast Cancer Res Treat 123:563–567. doi:10.1007/s10549-010-0781-7

    PubMed  CAS  Google Scholar 

  100. Huang Y, Li L, Yu L (2009) XRCC1 Arg399Gln, Arg194Trp and Arg280His polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis 24:331–339. doi:10.1093/mutage/gep013

    PubMed  CAS  Google Scholar 

  101. KEGG: http://www.genome.jp/kegg/pathway.html

  102. Grenet J, Teitz T, Wei T, Valentine V, Kidd VJ (1999) Structure and chromosome localization of the human CASP8 gene. Gene 226:225–232

    PubMed  CAS  Google Scholar 

  103. Sigurdson AJ, Bhatti P, Doody MM, Hauptmann M, Bowen L et al (2007) Polymorphisms in apoptosis- and proliferation-related genes, ionizing radiation exposure, and risk of breast cancer among US radiologic technologists. Cancer Epidemiol Biomarkers Prev 16:2000–2007. doi:10.1158/1055-9965.Epi-07-0282

    PubMed  CAS  Google Scholar 

  104. Peng CY, Graves PR, Thoma RS, Wu ZQ, Shaw AS et al (1997) Mitotic and G(2) checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505

    PubMed  CAS  Google Scholar 

  105. Matsuoka S, Huang MX, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897

    PubMed  CAS  Google Scholar 

  106. Entrez Gene: http://www.ncbi.nlm.nih.gov/gene/11200

  107. Dariavach P, Mattei MG, Golstein P, Lefranc MP (1988) Human Ig superfamily Ctla-4 gene—chromosomal localization and identity of protein-sequence between murine and human Ctla-4 cytoplasmic domains. Eur J Immunol 18:1901–1905

    PubMed  CAS  Google Scholar 

  108. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C et al (2006) Reversal of the TCR stop signal by CTLA-4. Science 313:1972–1975. doi:10.1126/science.1131078

    PubMed  CAS  Google Scholar 

  109. Ueda H, Howson JMM, Esposito L, Heward J, Snook H et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511. doi:10.1038/Nature01621

    PubMed  CAS  Google Scholar 

  110. Zhernakova A, Eerligh P, Barrera P, Weseloy JZ, Huizinga TWJ et al (2005) CTLA4 is differentially associated with autoimmune diseases in the Dutch population. Hum Genet 118:58–66. doi:10.1007/s00439-005-0006-z

    PubMed  CAS  Google Scholar 

  111. Ingersoll RG, Paznekas WA, Tran AK, Scott AF, Jiang G et al (2001) Fibroblast growth factor receptor 2 (FGFR2): genomic sequence and variations. Cytogenet Cell Genet 94:121–126

    PubMed  CAS  Google Scholar 

  112. Ricol D, Cappellen D, El Marjou A, Gil-Diez-de-Medina S, Girault JM et al (1999) Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene 18:7234–7243

    PubMed  CAS  Google Scholar 

  113. Tannheimer SL, Rehemtulla A, Ethier SP (2000) Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res 2:311–320

    PubMed  CAS  Google Scholar 

  114. Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M et al (1991) BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6:659–663

    PubMed  CAS  Google Scholar 

  115. Koziczak M, Holbro T, Hynes NE (2004) Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 23:3501–3508. doi:10.1038/sj.onc.1207331

    PubMed  CAS  Google Scholar 

  116. Moffa AB, Ethier SP (2007) Differential signal transduction of alternatively spliced FGFR2 variants expressed epithelial in human mammary cells. J Cell Physiol 210:720–731. doi:10.1002/Jcp.20880

    PubMed  CAS  Google Scholar 

  117. Tamir A, Fawzi AB, Northup JK (1990) Unique guanine-nucleotide binding-properties of the human placental Gtp-binding protein Gp. Biochemistry 29:6947–6954

    PubMed  CAS  Google Scholar 

  118. Sakai E, Rikimaru K, Ueda M, Matsumoto Y, Ishii N et al (1992) The P53 tumor-suppressor gene and Ras oncogene mutations in oral squamous-cell carcinoma. Int J Cancer 52:867–872

    PubMed  CAS  Google Scholar 

  119. March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G et al (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641–647

    PubMed  CAS  Google Scholar 

  120. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D et al (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100:2645–2650. doi:10.1073/pnas.0437939100

    PubMed  CAS  Google Scholar 

  121. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M et al (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci USA 106:7119–7124. doi:10.1073/pnas.0902745106

    PubMed  CAS  Google Scholar 

  122. May W, Korenberg JR, Chen XN, Lunsford L, Wood WJ et al (1993) Human lymphocyte-specific Pp52 gene is a member of a highly conserved dispersed family. Genomics 15:515–520

    PubMed  CAS  Google Scholar 

  123. Liu LX, Cara DC, Kaur J, Raharjo E, Mullaly SC et al (2005) LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J Exp Med 201:409–418. doi:10.1084/Jem.20040830

    PubMed  CAS  Google Scholar 

  124. Vinik BS, Kay ES, Fiedorek FT (1995) Mapping of the Mek kinase gene (Mekk) to mouse chromosome-13 and human-chromosome-5. Mamm Genome 6:782–783

    PubMed  CAS  Google Scholar 

  125. Lu ZM, Xu SC, Joazeiro C, Cobb MH, Hunter T (2002) The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9:945–956

    PubMed  CAS  Google Scholar 

  126. Roy SK, Hu JB, Meng QJ, Xia Y, Shapiro PS et al (2002) MEKK1 plays a critical role in activating the transcription factor gene expression in C/EBP-beta-dependent response to IFN-gamma. Proc Natl Acad Sci USA 99:7945–7950

    PubMed  CAS  Google Scholar 

  127. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    PubMed  CAS  Google Scholar 

  128. Pushkin A, Abuladze N, Lee I, Newman D, Hwang J et al (1999) Cloning, tissue distribution, genomic organization, and functional characterization of NBCS, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274:16569–16575

    PubMed  CAS  Google Scholar 

  129. Reiners J, van Wijk E, Marker T, Zimmermann U, Jurgens K et al (2005) Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet 14:3933–3943. doi:10.1093/Hmg/Ddi417

    PubMed  CAS  Google Scholar 

  130. Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S et al (2003) Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34:313–319. doi:10.1038/Ng1176

    PubMed  CAS  Google Scholar 

  131. Kenmochi N, Suzuki T, Uechi T, Magoori M, Kuniba M et al (2001) The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders. Genomics 77:65–70. doi:10.1006/geno.2001.6622

    PubMed  CAS  Google Scholar 

  132. Koc EC, Burkhart W, Blackburn K, Moseley A, Spremulli LL (2001) The small subunit of the mammalian mitochondrial ribosome—identification of the full complement of ribosomal proteins present. J Biol Chem 276:19363–19374

    CAS  Google Scholar 

  133. von Rotz RC, Kins S, Hipfel R, von der Kammer H, Nitsch RM (2005) The novel cytosolic RING finger protein dactylidin is up-regulated in brains of patients with Alzheimer’s disease. Eur J Neurosci 21:1289–1298. doi:10.1111/j.1460-9568.2005.03977.x

    Google Scholar 

  134. O’Flaherty E, Kaye J (2003) TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4:13

    Google Scholar 

  135. Smid M, Wang YX, Klijn JGM, Sieuwerts AM, Zhang Y et al (2006) Genes associated with breast cancer metastatic to bone. J Clin Oncol 24:2261–2267. doi:10.1200/Jco.2005.03.8802

    PubMed  CAS  Google Scholar 

  136. Antoniou AC, Spurdle AB, Sinilnikova OM, Healey S, Pooley KA et al (2008) Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am J Hum Genet 82:937–948. doi:10.1016/j.ajhg.2008.02.008

    PubMed  CAS  Google Scholar 

  137. Gianfrancesco F, Esposito T, Ombra MN, Forabosco P, Maninchedda G et al (2003) Identification of a novel gene and a common variant associated with uric acid nephrolithiasis in a Sardinian genetic isolate. Am J Hum Genet 72:1479–1491

    PubMed  CAS  Google Scholar 

  138. Wang Q, Du XL, Meinkoth J, Hirohashi Y, Zhang HT et al (2006) Characterization of Su48, a centrosome protein essential for cell division. Proc Natl Acad Sci USA 103:6512–6517. doi:10.1073/pnas.0601682103

    PubMed  CAS  Google Scholar 

  139. Lau J, Ioannidis JPA, Terrin N, Schmid CH, Olkin I (2006) Evidence based medicine—the case of the misleading funnel plot. Br Med J 333:597–600

    Google Scholar 

  140. Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi:10.1038/nbt1486

    PubMed  CAS  Google Scholar 

  141. Pfeifer GP, Hainaut P (2011) Next-generation sequencing: emerging lessons on the origins of human cancer. Curr Opin Oncol 23:62–68. doi:10.1097/CCO.0b013e3283414d00

    PubMed  Google Scholar 

  142. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    PubMed  CAS  Google Scholar 

  143. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    PubMed  CAS  Google Scholar 

  144. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696. doi:10.1038/nrg2841

    PubMed  CAS  Google Scholar 

  145. Sergentanis TN, Economopoulos KP (2010) Cyclin D1 G870A polymorphism and breast cancer risk: a meta-analysis comprising 9,911 cases and 11,171 controls. Mol Biol Rep. doi:10.1007/s11033-010-0639-4

  146. Zheng J, Yu X, Jiang L, Xiao M, Bai B et al (2010) Association between the cytotoxic T-lymphocyte antigen 4 +49G>A polymorphism and cancer risk: a meta-analysis. BMC Cancer 10:522. doi:10.1186/1471-2407-10-522

    PubMed  Google Scholar 

  147. Jia C, Cai Y, Ma Y, Fu D (2010) Quantitative assessment of the effect of FGFR2 gene polymorphism on the risk of breast cancer. Breast Cancer Res Treat 124:521–528. doi:10.1007/s10549-010-0872-5

    PubMed  CAS  Google Scholar 

  148. Qiu LX, Yuan H, Yu KD, Mao C, Chen B et al (2010) Glutathione S-transferase M1 polymorphism and breast cancer susceptibility: a meta-analysis involving 46,281 subjects. Breast Cancer Res Treat 121:703–708. doi:10.1007/s10549-009-0636-2

    PubMed  CAS  Google Scholar 

  149. Lu S, Wang Z, Liu H, Hao X (2010) HER2 Ile655Val polymorphism contributes to breast cancer risk: evidence from 27 case–control studies. Breast Cancer Res Treat 124:771–778. doi:10.1007/s10549-010-0886-z

    PubMed  CAS  Google Scholar 

  150. Weston A, Godbold JH (1997) Polymorphisms of H-ras-1 and p53 in breast cancer and lung cancer: a meta-analysis. Environ Health Perspect 105(Suppl 4):919–926

    PubMed  CAS  Google Scholar 

  151. Chen MB, Li C, Shen WX, Guo YJ, Shen W et al (2010) Association of a LSP1 gene rs3817198T>C polymorphism with breast cancer risk: evidence from 33,920 cases and 35,671 controls. Mol Biol Rep. doi:10.1007/s11033-010-0603-3

  152. Lu PH, Yang J, Li C, Wei MX, Shen W et al (2010) Association between mitogen-activated protein kinase kinase kinase 1 rs889312 polymorphism and breast cancer risk: evidence from 59,977 subjects. Breast Cancer Res Treat. doi:10.1007/s10549-010-1151-1

  153. Economopoulos KP, Sergentanis TN (2010) Differential effects of MDM2 SNP309 polymorphism on breast cancer risk along with race: a meta-analysis. Breast Cancer Res Treat 120:211–216. doi:10.1007/s10549-009-0467-1

    PubMed  Google Scholar 

  154. Qi XW, Ma XY, Yang XH, Fan LJ, Zhang Y et al (2010) Methylenetetrahydrofolate reductase polymorphisms and breast cancer risk: a meta-analysis from 41 studies with 16,480 cases and 22,388 controls. Breast Cancer Res Treat 123:499–506. doi:10.1007/s10549-010-0773-7

    PubMed  CAS  Google Scholar 

  155. Hao Y, Montiel R, Huang Y (2010) Endothelial nitric oxide synthase (eNOS) 894 G>T polymorphism is associated with breast cancer risk: a meta-analysis. Breast Cancer Res Treat 124:809–813. doi:10.1007/s10549-010-0833-z

    PubMed  CAS  Google Scholar 

  156. Wang Z, Dong H, Fu Y, Ding H (2010) RAD51 135G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects. Breast Cancer Res Treat 124:765–769. doi:10.1007/s10549-010-0885-0

    PubMed  CAS  Google Scholar 

  157. Sun YY, Zang ZH, Xu XH, Zhang ZL, Zhong L et al (2011) The association of SULT1A1 codon 213 polymorphism and breast cancer susceptibility: meta-analysis from 16 studies involving 23,445 subjects. Breast Cancer Res Treat 125:215–219. doi:10.1007/s10549-010-0953-5

    PubMed  Google Scholar 

  158. Fang F, Yao L, Yu XJ, Yu L, Wu Q (2010) TNF alpha-308 G/A polymorphism is associated with breast cancer risk: a meta-analysis involving 10,184 cases and 12,911 controls. Breast Cancer Res Treat 122:267–271. doi:10.1007/s10549-009-0698-1

    PubMed  CAS  Google Scholar 

  159. Hu Z, Li X, Qu X, He Y, Ring BZ et al (2010) Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: a meta-analysis. Carcinogenesis 31:643–647. doi:10.1093/carcin/bgq018

    PubMed  CAS  Google Scholar 

  160. Liu L, Yuan P, Wu C, Zhang X, Guo H et al (2011) A functional −77T>C polymorphism in XRCC1 is associated with risk of breast cancer. Breast Cancer Res Treat 125:479–487. doi:10.1007/s10549-010-0959-z

    PubMed  CAS  Google Scholar 

  161. Economopoulos KP, Sergentanis TN (2010) XRCC3 Thr241Met polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 121:439–443. doi:10.1007/s10549-009-0562-3

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The “Eleventh Five-Year” Science and Technology Support Plan of the Ministry of Science and Technology of China (MSTC, 2009BA180B00) and a grant from the Natural Science Foundation of Zhejiang Province (NSFZJ, Y2090081). We thank Dr. Iain Bruce for valuable comments and English editing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maode Lai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Lü, B., Ruan, W. et al. Genetic polymorphisms and breast cancer risk: evidence from meta-analyses, pooled analyses, and genome-wide association studies. Breast Cancer Res Treat 127, 309–324 (2011). https://doi.org/10.1007/s10549-011-1459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1459-5

Keywords

Navigation