Skip to main content

Advertisement

Log in

Whole exome sequencing of rare aggressive breast cancer histologies

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Little is known about mutational landscape of rare breast cancer (BC) subtypes. The aim of the study was to apply next generation sequencing to three different subtypes of rare BCs in order to identify new genes related to cancer progression. We performed whole exome and targeted sequencing of 29 micropapillary, 23 metaplastic, and 27 pleomorphic lobular BCs. Micropapillary BCs exhibit a profile comparable to common BCs: PIK3CA, TP53, GATA3, and MAP2K4 were the most frequently mutated genes. Metaplastic BCs presented a high frequency of TP53 (78 %) and PIK3CA (48 %) mutations and were recurrently mutated on KDM6A (13 %), a gene involved in histone demethylation. Pleomorphic lobular carcinoma exhibited high mutation rate of PIK3CA (30 %), TP53 (22 %), and CDH1 (41 %) and also presented mutations in PYGM, a gene involved in glycogen metabolism, in 8 out of 27 samples (30 %). Further analyses of publicly available datasets showed that PYGM is dramatically underexpressed in common cancers as compared to normal tissues and that low expression in tumors is correlated with poor relapse-free survival. Immunohistochemical staining on formalin-fixed paraffin-embedded tissues available in our cohort of patients confirmed higher PYGM expression in normal breast tissue compared to equivalent tumoral zone. Next generation sequencing methods applied on rare cancer subtypes can serve as a useful tool in order to uncover new potential therapeutic targets. Sequencing of pleomorphic lobular carcinoma identified a high rate of alterations in PYGM. These findings emphasize the role of glycogen metabolism in cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  PubMed Central  Google Scholar 

  2. Corless CL, Barnett CM, Heinrich MC (2011) Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 11:865–878

    CAS  PubMed  Google Scholar 

  3. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E et al (2008) Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 93:682–687

    Article  CAS  PubMed  Google Scholar 

  4. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of BC: How special are they? Mol Oncol 4:192–208

    Article  CAS  PubMed  Google Scholar 

  5. Marchiò C, Iravani M, Natrajan R, Lambros MB, Geyer FC, Savage K et al (2009) Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol 218:301–315

    Article  PubMed  Google Scholar 

  6. Walsh MM, Bleiweiss IJ (2001) Invasive micropapillary carcinoma of the breast: eighty cases of an underrecognized entity. Hum Pathol 32:583–589

    Article  CAS  PubMed  Google Scholar 

  7. Zekioglu O, Erhan Y, Ciris M, Bayramoglu H, Ozdemir N (2004) Invasive micropapillary carcinoma of the breast: high incidence of lymph node metastasis with extranodal extension and its immunohistochemical profile compared with invasive ductal carcinoma. Histopathology 44:18–23

    Article  CAS  PubMed  Google Scholar 

  8. Chen L, Fan Y, Lang RG, Guo XJ, Sun YL et al (2008) Breast carcinoma with micropapillary features: clinicopathologic study and long-term follow-up of 100 cases. Int J Surg Pathol 16:155–163

    Article  CAS  PubMed  Google Scholar 

  9. Nassar H (2004) Carcinomas with micropapillary morphology: clinical significance and current concepts. Adv Anat Pathol 11:297–303

    Article  PubMed  Google Scholar 

  10. Luini A, Aguilar M, Gatti G, Fasani R, Botteri E, Brito JA et al (2007) Metaplastic carcinoma of the breast, an unusual disease with worse prognosis: the experience of the European Institute of Oncology and review of the literature. BC Res Treat 101:349–353

    Article  Google Scholar 

  11. Cooper CL, Karim RZ, Selinger C, Carmalt H, Lee CS, O’Toole SA (2013) Molecular alterations in metaplastic breast carcinoma. J Clin Pathol 66:522–528

    Article  CAS  PubMed  Google Scholar 

  12. Vargas AC, Lakhani SR, Simpson PT (2009) Pleomorphic lobular carcinoma of the breast: molecular pathology and clinical impact. Future Oncol 5:233–243

    Article  CAS  PubMed  Google Scholar 

  13. Weidner N, Semple JP (1992) Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol 23:1167–1171

    Article  CAS  PubMed  Google Scholar 

  14. Eusebi V, Magalhaes F, Azzopardi JG (1992) Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol 23:655–662

    Article  CAS  PubMed  Google Scholar 

  15. Simpson PT, Reis-Filho JS, Lambros MB et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinoma. J Pathol 215:231–244

    Article  CAS  PubMed  Google Scholar 

  16. Middleton LP, Palacios DM, Bryant BR et al (2000) Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol 24:1650–1656

    Article  CAS  PubMed  Google Scholar 

  17. Lakhani S, Ellis I, Schnitt S et al (2012) WHO classification of tumours of the breast, 4th edn. IARC Press, Lyon

    Google Scholar 

  18. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al (2012) Sequence analysis of mutations and translocations across BC subtypes. Nature 486:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC et al (2012) The landscape of cancer genes and mutational processes in BC. Nature 486:400–404

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K et al (2012) Mutational processes molding the genomes of 21 BCs. Cell 149:979–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150:1107–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574

    Article  CAS  PubMed  Google Scholar 

  24. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519

    Article  CAS  PubMed  Google Scholar 

  25. http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/. Accessed September 2015

  26. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    Article  CAS  PubMed  Google Scholar 

  27. http://www.cbioportal.org/study.do?cancer_study_id=brca_tcga_pub. Accessed September 2015

  28. Kim J, Lee H, Kim Y, Yoo S, Park E, Park S (2010) The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol Cell Biol 30:1582–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dörfel MJ, Lyon GJ (2015) The biological functions of Naa10—from amino-terminal acetylation to human disease. Gene 567:103–131

    Article  PubMed  Google Scholar 

  30. Ross JS, Wang K, Al-Rohil RN, Nazeer T, Sheehan CE, Otto GA et al (2014) Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod Pathol 227:271–280

    Article  Google Scholar 

  31. Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM et al (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res 22:2315–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones DT, Jäger N, Kool M, Zichner T, Hutter B, Sultan M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho AS, Kannan K, Roy DM, Morris LG, Ganly I, Katabi N et al (2013) The mutational landscape of adenoid cystic carcinoma. Nat Genet 45:791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kinch MS, Moore MB, Harpole DH Jr (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9:613–618

    CAS  PubMed  Google Scholar 

  35. Andres AC, Reid HH, Zürcher G et al (1994) Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene 9:1461–1467

    CAS  PubMed  Google Scholar 

  36. Noren NK, Foos G, Hauser CA et al (2006) The EphB4 receptor suppresses BC cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8:815–825

    Article  CAS  PubMed  Google Scholar 

  37. Fang WB, Brantley-Sieders DM, Parker MA et al (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24:7859–7868

    Article  CAS  PubMed  Google Scholar 

  38. Fu DY, Wang ZM, Wang BL, Chen L, Yang WT, Shen ZZ et al (2010) Frequent epigenetic inactivation of the receptor tyrosine kinase EphA5 by promoter methylation in human BC. Hum Pathol 41:48–58

    Article  CAS  PubMed  Google Scholar 

  39. Lim B, Jun HJ, Kim AY, Kim S, Choi J, Kim J (2012) The TFG-TEC fusion gene created by the t(3;9) translocation in human extraskeletal myxoid chondrosarcomas encodes a more potent transcriptional activator than TEC. Carcinogenesis 33:1450–1458

    Article  CAS  PubMed  Google Scholar 

  40. Sjogren H, Meis-Kindblom J, Kindblom LG, Aman P, Stenman G (1999) Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res 59:5064–5067

    CAS  PubMed  Google Scholar 

  41. Attwooll C, Tariq M, Harris M, Coyne JD, Telford N, Varley JM (1999) Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 18:7599–7601

    Article  CAS  PubMed  Google Scholar 

  42. Newgard CB, Hwang PK, Fletterick RJ (1989) The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24:69–99

    Article  CAS  PubMed  Google Scholar 

  43. Lucia A, Nogales-Gadea G, Pérez M, Martín MA, Andreu AL, Arenas J (2008) McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol 4:568–577

    Article  PubMed  Google Scholar 

  44. Browner MF, Fletterick RJ (1992) Phosphorylase: a biological transducer. Trends Biochem Sci 17:66–71

    Article  CAS  PubMed  Google Scholar 

  45. Sprang SR, Withers SG, Goldsmith EJ, Fletterick RJ, Madsen NB (1991) Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science 254:1367–1371

    Article  CAS  PubMed  Google Scholar 

  46. Andreu AL, Nogales-Gadea G, Cassandrini D, Arenas J, Bruno C (2007) McArdle disease: molecular genetic update. Acta Myol 26:53–57

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nogales-Gadea G, Brull A, Santalla A, Andreu AL, Arenas J, Martín MA, Lucia A, de Luna N, Pinós T (2015) McArdle disease: update of reported mutations and polymorphisms in the PYGM gene. Hum Mutat 36:669–678

    Article  CAS  PubMed  Google Scholar 

  48. Gurgel-Giannetti J, Nogales-Gadea G, van der Linden H, Bellard TM Jr, Brasileiro Filho G, Giannetti AV, de Castro Concentino EL, Vainzof M (2013) Clinical and molecular characterization of McArdle’s disease in Brazilian patients. Neuromol Med 15:470–475

    Article  CAS  Google Scholar 

  49. Syed NA, Khandelwal RL (2000) Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol-3 kinase and protein phosphatase-1 in HepG2 cells. Mol Cell Biochem 211:123–136

    Article  CAS  PubMed  Google Scholar 

  50. Rhodes JR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. http://www.oncomine.org. Accessed September 2015

  52. http://kmplot.com/analysis/. Accessed September 2015

  53. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on BC prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731

    Article  PubMed  Google Scholar 

  54. Gruel N, Benhamo V, Bhalshankar J, Popova T, Fréneaux P, Arnould L et al (2014) Polarity gene alterations in pure invasive micropapillary carcinomas of the breast. Breast Cancer Res 16:R46

    Article  PubMed  PubMed Central  Google Scholar 

  55. Natrajan R, Wilkerson PM, Marchiò C, Piscuoglio S, Ng KY, Wai P et al (2014) Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol 232:553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ellis MJ, Perou CM (2013) The genomic landscape of BC as a therapeutic roadmap. Cancer Discov 3:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y et al (2012) The clonal and mutational evolution spectrum of primary triple-negative BCs. Nature 486:395–399

    CAS  PubMed  Google Scholar 

  59. Ross JS, Badve S, Wang K, Sheehan CE, Boguniewicz AB, Otto GA et al (2015) Genomic profiling of advanced-stage, metaplastic breast carcinoma by next-generation sequencing reveals frequent, targetable genomic abnormalities and potential new treatment options. Arch Pathol Lab Med 139:642–649

    Article  PubMed  Google Scholar 

  60. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pastor MD, Nogal A, Molina-Pinelo S, Meléndez R, Salinas A, González De la Peña M, Martín-Juan J, Corral J, García-Carbonero R, Carnero A, Paz-Ares L (2013) Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics 89:227–237

    Article  CAS  PubMed  Google Scholar 

  62. Petzmann S, Ullmann R, Klemen H, Renner H, Popper HH (2001) Loss of heterozygosity on chromosome arm 11q in lung carcinoids. Hum Pathol 32:333–338

    Article  CAS  PubMed  Google Scholar 

  63. Debelenko LV, Brambilla E, Agarwal SK, Swalwell JI, Kester MB, Lubensky IA, Zhuang Z et al (1997) Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum Mol Genet 6:2285–2290

    Article  CAS  PubMed  Google Scholar 

  64. Vageli D, Daniil Z, Dahabreh J, Karagianni E, Liloglou T, Koukoulis G, Gourgoulianis K (2006) Microsatellite instability and loss of heterozygosity at the MEN1 locus in lung carcinoid tumors: a novel approach using real-time PCR with melting curve analysis in histopathologic material. Oncol Rep 15:557–564

    CAS  PubMed  Google Scholar 

  65. Maire G, Forus A, Foa C, Bjerkehagen B, Mainguené C, Kresse SH, Myklebost O, Pedeutour F (2003) 11q13 alterations in two cases of hibernoma: large heterozygous deletions and rearrangement breakpoints near GARP in 11q13.5. Genes Chromosomes Cancer 37:389–395

    Article  CAS  PubMed  Google Scholar 

  66. Grassilli E, Narloch R, Federzoni E, Ianzano L, Pisano F, Giovannoni R, Romano G et al (2013) Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy. Clin Cancer Res 19:3820–3831

    Article  CAS  PubMed  Google Scholar 

  67. Zeng J, Liu D, Qiu Z, Huang Y, Chen B, Wang L, Xu H, Huang N, Liu L, Li W et al (2014) GSK3β overexpression indicates poor prognosis and its inhibition reduces cell proliferation and survival of non-small cell lung cancer cells. PLoS One 9:e91231

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pal K, Cao Y, Gaisina IN, Bhattacharya S, Dutta SK, Wang E, Gunosewoyo H, Kozikowski AP, Billadeau DD, Mukhopadhyay D (2014) Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi S, Satomi A, Yano K, Kawase H, Tanimizu T, Tuji Y et al (1999) Estimation of glycogen levels in human colorectal cancer tissue: relationship with cell cycle and tumor outgrowth. Gastroenterology 34:474–480

    Article  CAS  Google Scholar 

  70. Skwarski L, Namiot Z, Stasiewicz J, Kemona A, Kralisz M, Górski J (1998) Glycogen content in the gastric mucosa of partially resected stomach; a possible relationship with the development of cancer. Cancer Lett 127:123–128

    Article  CAS  PubMed  Google Scholar 

  71. de Jong BW, Schut TC, Maquelin K, van der Kwast T, Bangma CH, Kok DJ et al (2006) Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal Chem 78:7761–7769

    Article  PubMed  Google Scholar 

  72. Yano K, Ohoshima S, Shimizu Y, Moriguchi T, Katayama H (1996) Evaluation of glycogen level in human lung carcinoma tissues by an infrared spectroscopic method. Cancer Lett 110:29–34

    Article  CAS  PubMed  Google Scholar 

  73. Ribback S, Cigliano A, Kroeger N, Pilo MG, Terracciano L, Burchardt M et al (2015) PI3K/AKT/mTOR pathway plays a major pathogenetic role in glycogen accumulation and tumor development in renal distal tubules of rats and men. Oncotarget 6:13036–13048

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pelletier J, Bellot G, Gounon P, Lacas-Gervais S, Pouysségur J, Mazure NM (2012) Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front Oncol 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  75. Iida Y, Aoki K, Asakura T, Ueda K, Yanaihara N, Takakura S, Yamada K, Okamoto A, Tanaka T, Ohkawa K (2012) Hypoxia promotes glycogen synthesis and accumulation in human ovarian clear cell carcinoma. Int J Oncol 40:2122–2130

    CAS  PubMed  Google Scholar 

  76. Philips KB, Kurtoglu M, Leung HJ, Liu H, Gao N, Lehrman MA, Murray TG, Lampidis TJ (2014) Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-d-glucose. Cancer Chemother Pharmacol 73:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C et al (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16:751–764

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Donation Program of “Opération Parrain-Chercheur” and Grants from Odyssea, Dassault Foundation, DUERTECC/EURONCO (Diplôme Universitaire Européen de Recherche Translationnelle et Clinique en Cancérologie) and the Monica Boscolo 2012 Research Grant. We thank Yuki Takahashi for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine Lefebvre.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Additional information

Maria Vittoria Dieci and Veronika Smutná have equally contributed as first authors.

Celine Lefebvre and Fabrice André have equally contributed as senior scientists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1037 kb)

Supplementary material 2 (XLSX 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieci, M.V., Smutná, V., Scott, V. et al. Whole exome sequencing of rare aggressive breast cancer histologies. Breast Cancer Res Treat 156, 21–32 (2016). https://doi.org/10.1007/s10549-016-3718-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3718-y

Keywords

Navigation