Skip to main content
Log in

Lipid Dynamics in Exocytosis

  • Report
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Regulated exocytosis of neurotransmitter- and hormone-containing vesicles underpins neuronal and hormonal communication and relies on a well-orchestrated series of molecular interactions. This in part involves the upstream formation of a complex of SNAREs and associated proteins leading to the eventual fusion of the vesicle membrane with the plasma membrane, a process that enables content release. Although the role of lipids in exocytosis is intuitive, it has long been overlooked at least compared to the extensive work on SNAREs. Here, we will present the latest advances in this rapidly developing field revealing that lipids actually play an active role in exocytosis by focusing on cholesterol, 3′-phosphorylated phosphoinositides and phosphatidic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bader MF, Vitale N (2009) Phospholipase D in calcium-regulated exocytosis: lessons from chromaffin cells. Biochim Biophys Acta 1791:936–941

    CAS  PubMed  Google Scholar 

  • Belmonte SA, Lopez CI, Roggero CM, De Blas GA, Tomes CN, Mayorga LS (2005) Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev Biol 285:393–408

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM (1987) Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta 906:353–404

    CAS  PubMed  Google Scholar 

  • Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF (1998) Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain LH, Burgoyne RD, Gould GW (2001) SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98:5619–5624

    Article  CAS  PubMed  Google Scholar 

  • Chasserot-Golaz S, Hubert P, Thiersé D, Dirrig S, Vlahos CJ, Aunis D, Bader MF (1998) Possible involvement of phosphatidylinositol 3-kinase in regulated exocytosis: studies in chromaffin cells with inhibitor LY294002. J Neurochem 70:2347–2356

    Article  CAS  PubMed  Google Scholar 

  • Chasserot-Golaz S, Vitale N, Umbrecht-Jenck E, Knight D, Gerke V, Bader MF (2005) Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell 3:1108–1119

    Article  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  CAS  PubMed  Google Scholar 

  • Choi WS, Kim M, Combs C, Frohman MA, Beaven MA (2002) Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells. J Immunol 168:5682–5689

    CAS  PubMed  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG 4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    Article  CAS  PubMed  Google Scholar 

  • Churchward MA, Coorssen JR (2009) Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem J 423:1–14

    Article  CAS  PubMed  Google Scholar 

  • Churchward MA, Rogasevskaia T, Hofgen J, Bau J, Coorssen JR (2005) Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 118:4833–4848

    Article  CAS  PubMed  Google Scholar 

  • Churchward MA, Rogasevskaia T, Brandman DM, Khosravani H, Nava P, Atkinson JK, Coorssen JR (2008) Specific lipids supply critical intrinsic negative curvature—an essential component of native Ca2+-triggered membrane fusion. Biophys J 94:3976–3995

    Article  CAS  PubMed  Google Scholar 

  • Darios F, Connell E, Davletov B (2007) Phospholipases and fatty acid signalling in exocytosis. J Physiol 585:699–704

    Article  CAS  PubMed  Google Scholar 

  • Demel RA, Yin CC, Lin BZ, Hauser H (1992) Monolayer characteristics and thermal behaviour of phosphatidic acids. Chem Phys Lipids 60:209–223

    Article  CAS  PubMed  Google Scholar 

  • Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC, Waterfield MD (1997) Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem J 326:139–147

    CAS  PubMed  Google Scholar 

  • Eberhard DA, Holz RW (1991) Regulation of the formation of inositol phosphates by calcium, guanine nucleotides and ATP in digitonin-permeabilized bovine adrenal chromaffin cells. Biochem J 279:447–453

    CAS  PubMed  Google Scholar 

  • Freyberg Z, Siddhanta A, Shields D (2003) “Slip, sliding away”: phospholipase D and the Golgi apparatus. Trends Cell Biol 13:540–546

    Article  CAS  PubMed  Google Scholar 

  • Furber KA, Brandman D, Coorssen JR (2009a) Enhancement of the Ca2+-triggering steps of native membrane fusion via thiol-reactivity. J Chem Biol 2:27–37

    Article  PubMed  Google Scholar 

  • Furber KA, Churchward MA, Rogasevskaia T, Coorssen JR (2009b) Identifying critical components of native Ca2+-triggered membrane fusion: integrating studies of proteins and lipids. Ann N Y Acad Sci 1152:121–134

    Article  CAS  PubMed  Google Scholar 

  • Furber KL, Dean KT, Coorssen JR (2010) Dissecting the mechanism of Ca2+-triggered membrane fusion: probing protein function using thiol-reactivity. Clin Exp Pharmacol Physiol 37:208–217

    Article  CAS  PubMed  Google Scholar 

  • Garidel P, Johann C, Blume A (1997) Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J 72:2196–2210

    Article  CAS  PubMed  Google Scholar 

  • Hay JC, Martin TF (1992) Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol 119:139–151

    Article  CAS  PubMed  Google Scholar 

  • Hay JC, Martin TF (1993) Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366:572–575

    Article  CAS  PubMed  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TF (1995) ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374:173–177

    Article  CAS  PubMed  Google Scholar 

  • Holz RW, Hlubek MD, Sorensen SD, Fisher SK, Balla T, Ozaki S, Prestwich GD, Stuenkel EL, Bittner MA (2000) A pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J Biol Chem 275:17878–17885

    Article  CAS  PubMed  Google Scholar 

  • Hope HR, Pike LJ (1996) Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol Biol Cell 7:843–851

    CAS  PubMed  Google Scholar 

  • Hughes WE, Elgundi Z, Huang P, Frohman MA, Biden TJ (2004) Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic beta-cells. J Biol Chem 279:27534–27541

    Article  CAS  PubMed  Google Scholar 

  • Humeau Y, Vitale N, Chasserot-Golaz S, Dupont JL, Du G, Frohman MA, Bader MF, Poulain B (2001) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci USA 98:15300–15305

    Article  CAS  PubMed  Google Scholar 

  • James DJ, Khodthong C, Kowalchyk JA, Martin TF (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182:355–366

    Article  CAS  PubMed  Google Scholar 

  • James DJ, Kowalchyk JA, Daily N, Petrie M, Martin TF (2009) CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Natl Acad Sci USA 106:17308–17313

    Article  CAS  PubMed  Google Scholar 

  • Jefferies HB, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD, Parker PJ (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P2 production, disrupts endomembrane traffic and retroviral budding. EMBO Rep 9:164–170

    Article  CAS  PubMed  Google Scholar 

  • Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    Article  CAS  PubMed  Google Scholar 

  • Lam AD, Tryoen-Toth P, Tsai B, Vitale N, Stuenkel EL (2008) SNARE-catalyzed fusion events are regulated by syntaxin1a-lipid interactions. Mol Biol Cell 19:485–497

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C, Jahn R (2001) SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J 20:2202–2213

    Article  CAS  PubMed  Google Scholar 

  • Martin TF (2001) PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol 13:493–499

    Article  CAS  PubMed  Google Scholar 

  • Mayer A (2001) What drives membrane fusion in eukaryotes? Trends Biochim Sci 26:717–723

    Article  CAS  Google Scholar 

  • Melia TJ, You D, Tareste DC, Rothman JE (2006) Lipidic antagonists to SNARE-mediated fusion. J Biol Chem 281:29597–29605

    Article  CAS  PubMed  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GR, Cooke FT, Parker PJ, Domin J, Schiavo G (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16:4841–4851

    Article  CAS  PubMed  Google Scholar 

  • Mima J, Wickner W (2009) Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 284:27114–27122

    Article  CAS  PubMed  Google Scholar 

  • Osborne SL, Meunier FA, Schiavo G (2001) Phosphoinositides as key regulators of synaptic function. Neuron 32:9–12

    Article  CAS  PubMed  Google Scholar 

  • Osborne SL, Wallis TP, Jimenez JL, Gorman JJ, Meunier FA (2007) Identification of secretory granule phosphatidylinositol 4,5-bisphosphate-interacting proteins using an affinity pulldown strategy. Mol Biol Proteomics 6:1158–1169

    Article  CAS  Google Scholar 

  • Osborne SL, Wen PJ, Boucheron C, Nguyen HN, Hayakawa M, Kaizawa H, Parker PJ, Vitale N, Meunier FA (2008) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283:2804–2813

    Article  CAS  PubMed  Google Scholar 

  • Rogasevskaia T, Coorssen JR (2006) Rafts define the efficiency of native Ca2+-triggered membrane fusion. J Cell Sci 119:2688–2694

    Article  CAS  PubMed  Google Scholar 

  • Shisheva A, Sbrissa D, Ikonomov O (1999) Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol 19:623–634

    CAS  PubMed  Google Scholar 

  • Siegel DP (1999) The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J 76:291–313

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    CAS  PubMed  Google Scholar 

  • Stutchfield J, Cockcroft S (1993) Correlation between secretion and phospholipase D activation in differentiated HL60 cells. Biochem J 293:649–655

    CAS  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395:347–353

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Hatakeyama H, Okado H, Miwa A, Kishimoto T, Kojima T, Abe T, Kasai H (2004) Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. J Cell Biol 165:255–262

    Article  CAS  PubMed  Google Scholar 

  • Umbrecht-Jenck E, Demais V, Calco V, Bailly Y, Bader MF, Chasserot-Golaz S (2010) S100A10 mediated translocation of annexin A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic 11:958–971

    Article  CAS  PubMed  Google Scholar 

  • Vicogne J, Vollenweider D, Smith JR, Huang P, Frohman MA, Pessin JE (2006) Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci USA 103:14761–14766

    Article  CAS  PubMed  Google Scholar 

  • Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434

    Article  CAS  PubMed  Google Scholar 

  • Waselle L, Gerona R, Vitale N, Martin TFJ, Bader MF, Regazzi R (2005) Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol 19:3097–3106

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:749–772

    Article  Google Scholar 

  • Wen PJ, Osborne SL, Morrow IC, Parton RG, Domin J, Meunier FA (2008) Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 19:5593–5603

    Article  CAS  PubMed  Google Scholar 

  • Wen PJ, Osborne SL, Meunier FA (2010) Dynamic control of neuroexocytosis by phosphoinositides in health and disease. Prog Lipid Res

  • Xie MS, Jacobs LS, Dubyak GR (1991) Activation of phospholipase D and primary granule secretion by P2-purinergic- and chemotactic peptide-receptor agaonists is induced during granulocyte differenciation of HL-60 cells. J Clin Invest 88:45–54

    Article  CAS  PubMed  Google Scholar 

  • Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberle AM, Demais V, Bailly Y, Gottfried I, Nakanishi H, Neiman AM, Du G, Frohman MA, Bader MF, Vitale N (2007) Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282:21746–21757

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci USA 104:17518–17523

    Article  CAS  PubMed  Google Scholar 

  • Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  PubMed  Google Scholar 

  • Zimmerberg J, Chernomordik LV (1999) Membrane fusion. Adv Drug Deliv Rev 38:197–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We want to thank the members of our laboratories and the collaborators who contributed to the work presented here. We wish to thank Dr Nancy Grant for critical reading of the manuscript. Work in NV’s group is supported by Agence Nationale pour la Recherche (ANR-09-BLAN-0264-01 grant). JRC acknowledges support of the CIHR, NSERC, and the University of Western Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vitale.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9610-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chasserot-Golaz, S., Coorssen, J.R., Meunier, F.A. et al. Lipid Dynamics in Exocytosis. Cell Mol Neurobiol 30, 1335–1342 (2010). https://doi.org/10.1007/s10571-010-9577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9577-x

Keywords

Navigation