Skip to main content
Log in

Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Most insects have telomeres that consist of pentanucleotide (TTAGG) telomeric repeats, which are synthesized by telomerase. However, all species in Diptera so far examined and several species in other orders of insect have lost the (TTAGG)n repeats, suggesting that some of them recruit telomerase-independent telomere maintenance. The silkworm, Bombyx mori, retains the TTAGG motifs in the chromosomal ends but expresses quite a low level of telomerase activity in all stages of various tissues. Just proximal to a 6–8-kb stretch of the TTAGG repeats in B. mori, more than 1000 copies of non-LTR retrotransposons, designated TRAS and SART families, occur among the telomeric repeats and accumulate. TRAS and SART are abundantly transcribed and actively retrotransposed into TTAGG telomeric repeats in a highly sequence-specific manner. They have three possible mechanisms to ensure specific integration into the telomeric repeats. This article focuses on the telomere structure and telomere-specific non-LTR retrotransposons in B. mori and discusses the mechanisms for telomere maintenance in this insect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martin-Gallardo A, Villasante A (2004) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21: 1620–1624.

    Article  PubMed  Google Scholar 

  • Anzai T, Takahashi H, Fujiwara H (2001) Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)n by endonuclease of non-long terminal repeat retrotransposon TRAS1. Mol Cell Biol 21: 100–108.

    Article  PubMed  Google Scholar 

  • Anzai T, Osanai M, Hamada M, Fujiwara H (2005) Functional roles of read-through 28S rRNA sequence in in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucl Acids Res 33: 1993–2002.

    Google Scholar 

  • Biessmann H, Mason JM (2003) Telomerase-independent mechanisms of telomere elongation. Cell Mol Life Sci 60: 2325–2333.

    Article  PubMed  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350: 569–573.

    Article  PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003a) Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci USA 100: 3363–3368.

    PubMed  Google Scholar 

  • Casacuberta E, Pardue ML (2003b) HeT-A elements in Drosophila virilis: Retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acad Sci USA 100: 14091–14096.

    Article  PubMed  Google Scholar 

  • Chambeyron S, Bucheton A, Busseau I (2002) Tandem UAA repeats at the 3′-end of the transcript are essential for the precise initiation of reverse transcription of the I factor in Drosophila melanogaster. J Biol Chem 277: 17877–17882.

    Article  PubMed  Google Scholar 

  • Christensen S, Pont-Kingdon G, Carroll D (2000) Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon Tx1L. Mol Cell Biol 20: 1219–1226.

    Article  PubMed  Google Scholar 

  • Cohn M, Edstrom JE (1992) Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35: 114–122.

    Article  PubMed  Google Scholar 

  • Eickbush TH (1997) Telomerase and retrotransposons: which came first? Science 277: 911–912.

    Article  PubMed  Google Scholar 

  • Feng Q, Schumann G, Boeke JD (1998) Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci USA 95: 2083–2088.

    Article  PubMed  Google Scholar 

  • Frydrychoba R, Grossman P, Trubac P, Vitkova M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47: 163–178.

    Article  Google Scholar 

  • Fujiwara H, Ninaki O, Kobayashi M, Kusuda J, Maekawa H (1991) Chromosomal fragment responsible for genetic mosaicism in larval body marking of the silkworm, Bombyx mori. Genet Res 57: 11–16.

    Google Scholar 

  • Fujiwara H, Yanagawa M, Ishikawa H (1994) Mosaic formation by developmental loss of a chromosomal fragment in a “mottled striped” mosaic strain of the silkworm, Bombyx mori. Roux’s Arch Dev Biol 203: 389–396.

    Article  Google Scholar 

  • Fujiwara H, Nakazato Y, Okazaki S, Ninaki O (2000) Stability and telomere structure of chromosomal fragments in two different mosaic strains of the silkworm, Bombyx mori. Zool Sci 17: 743–750.

    Article  Google Scholar 

  • Frydrychova R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115: 179–187.

    PubMed  Google Scholar 

  • Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20: 7634–7642.

    Article  PubMed  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111: 433–444.

    Article  PubMed  Google Scholar 

  • Klapper W, Kuhne K, Singh KK et al. (1998) Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Lett 439: 143–146.

    Article  PubMed  Google Scholar 

  • Kojima KK, Fujiwara H (2003) Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol Biol Evol 20: 351–361.

    Article  PubMed  Google Scholar 

  • Kojima KK, Fujiwara H (2004) Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. Mol Biol Evol 21: 207–217.

    Article  PubMed  Google Scholar 

  • Kojima KK, Matsumoto T, Fujiwara H (2005) Eukaryotic translational coupling in UAAUG stop-start codons for the bicistronic RNA translation of non-LTR retrotransposon SART1. Mol Cell Biol (in press).

  • Kubo Y, Okazaki S, Anzai T, Fujiwara H (2001) Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol 18: 848–857.

    PubMed  Google Scholar 

  • Lamb J, Jarris PC, Wilkie AOM et al. (1993) De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha thalassaemia/mental retardation syndorome (ATR-16). Am J Hum Genet 52: 668–676.

    PubMed  Google Scholar 

  • Luan DD, Korman MH, Jakubuczak JL, Eickbush TH (1995) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  Google Scholar 

  • Lundblad V, Wright WE (1996) Telomeres and telomerase: a simple picture becomes complex. Cell 87: 369–375.

    PubMed  Google Scholar 

  • Maita N, Anzai T, Aoyagi H, Mizuno H, Fujiwara H (2004) Crystal structure of the endonuclease domain encoded by the telomere-specific long interspersed nuclear element, TRAS1. J Biol Chem 24: 41067–41076.

    Article  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (1999) The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16: 793–805.

    PubMed  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (2000) Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. Gene 251: 101–108.

    Article  PubMed  Google Scholar 

  • Mandrioli M (2002) Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae. Chromosome Res 10: 279–286.

    Article  Google Scholar 

  • Matsumoto T, Takahashi H, Fujiwara H (2004) Targeted nuclear import of open reading frame 1 is required for in vivo retrotransposition of a telomere-specific non-long terminal repeat retrotransposn, SART1. Mol Cell Biol 24: 105–122.

    Article  PubMed  Google Scholar 

  • Mita K, Kasahara M, Sasaki S et al. (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11: 27–35.

    PubMed  Google Scholar 

  • Moore LL, Stanvitch G, Roth MB, Rosen D (2005) HCP-4/CENP-C promotes the prophase timing of centromere resolution by enabling the centromere association of HCP-6 in Caenorhabditis elegans. Mol Cell Biol 25: 2583–2592.

    Article  PubMed  Google Scholar 

  • Moran JV, Holmes SE, Naas TP et al. (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87: 917– 927.

    Article  PubMed  Google Scholar 

  • Muller F, Wicky C, Spicher A, Tobler H (1991) New telomere formation after developmentally regulated chromosomal breakage during the process of chromatin diminution in Ascaris lumbricoides. Cell 67: 815–822.

    Article  PubMed  Google Scholar 

  • Murakami A, Imai HT (1974) Cytological evidence for holocentric chromosomes of the silkworm, Bombyx mori and B. mandarina, (Bombycidae, Lepidoptera). Chromosoma 80: 167–178.

    Article  Google Scholar 

  • Nakamura TM, Morin GB, Chapman KB et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

    Article  PubMed  Google Scholar 

  • Nielsen L, Schmidt ER, Edstrom JE (1990) Subrepeats result from regional DNA sequence conservation in tandem repeats in Chironomus telomeres. J Mol Biol 216: 577–584.

    Article  PubMed  Google Scholar 

  • Nokkala S, Kuznetsova VG, Maryanska-Nadachowska A, Nokkala C (2004) Holocentric chromosomes in meiosis. I. Restriction of the number of chiasmata in bivalents. Chromosome Res 12: 733–739.

    Article  Google Scholar 

  • Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol Cell Biol 13: 1424–1432.

    Google Scholar 

  • Okazaki S, Ishikawa H, Fujiwara, H (1995) Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol Cell Biol 15: 4545–4552.

    PubMed  Google Scholar 

  • Osanai M, Takahashi H, Kojima KK, Hamada M, Fujiwara H (2004) Essential motifs in the 3′ untranslated region required for retrotransposition and the precise start of the reverse transcription in non-long-terminal-repeat retrotransposon SART1. Mol Cell Biol 24: 7902–7913.

    Article  PubMed  Google Scholar 

  • Pardue ML, DeBaryshe PG (1999) Telomeres and telomerase: more than the end of the line. Chromosoma 108: 73–82.

    Article  PubMed  Google Scholar 

  • Pardue M-L, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL (2005) Two retrotransposons maintain telomeres in Drosophila. Chromosome Research 13: 443–453.

    Google Scholar 

  • Rashkova S, Karam SE, Kellum R, Pardue ML (2002) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159: 397–402.

    Article  PubMed  Google Scholar 

  • Rashkova S, Athanasiadis A, Pardue ML (2003) Intracellular targeting of Gag proteins of the Drosophila telomeric retrotransposons. J Virol 77: 6376–6384.

    Article  PubMed  Google Scholar 

  • Robin S, Chambeyron S, Brun C, Bucheton A, Busseau I (2002) Trans-complementation of an endonuclease-defective tagged I element as a tool for the study of retrotransposition in Drosophila melanogaster. Mol Genet Genomics 267: 829–834.

    Article  PubMed  Google Scholar 

  • Roth CW, Kobeski F, Walter MF, Biessmann H (1997) Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 17: 5176–5183.

    PubMed  Google Scholar 

  • Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7: 449–460.

    Article  Google Scholar 

  • Sasaki T, Fujiwara H (2000) Detection and distribution patterns of telomerase activity in insects. Eur J Biochem 267: 3025–3031.

    PubMed  Google Scholar 

  • Takahashi H, Fujiwara H (1999) Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori. Nucleic Acids Res 27: 2015–2021.

    Article  PubMed  Google Scholar 

  • Takahashi H, Fujiwara H (2002) Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J 21: 408–417.

    Article  PubMed  Google Scholar 

  • Takahashi H, Okazaki S, Fujiwara, H (1997) A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res 25: 1578–1584.

    Article  PubMed  Google Scholar 

  • Xia Q, Zhou Z, Lu C et al. (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306: 1937–1940.

    Article  PubMed  Google Scholar 

  • Xiong Y, Eickbush TH (1988) The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol 8: 114–123.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, H., Osanai, M., Matsumoto, T. et al. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res 13, 455–467 (2005). https://doi.org/10.1007/s10577-005-0990-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0990-9

Key words

Navigation