Skip to main content
Log in

Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Human centromeres contain multi-megabase-sized arrays of alpha satellite DNA, a family of satellite DNA repeats based on a tandemly arranged 171 bp monomer. The centromere-specific histone protein CENP-A is assembled on alpha satellite DNA within the primary constriction, but does not extend along its entire length. CENP-A domains have been estimated to extend over 2,500 kb of alpha satellite DNA. However, these estimates do not take into account inter-individual variation in alpha satellite array sizes on homologous chromosomes and among different chromosomes. We defined the genomic distance of CENP-A chromatin on human chromosomes X and Y from different individuals. CENP-A chromatin occupied different genomic intervals on different chromosomes, but despite inter-chromosomal and inter-individual array size variation, the ratio of CENP-A to total alpha satellite DNA size remained consistent. Changes in the ratio of alpha satellite array size to CENP-A domain size were observed when CENP-A was overexpressed and when primary cells were transformed by disrupting interactions between the tumor suppressor protein Rb and chromatin. Our data support a model for centromeric domain organization in which the genomic limits of CENP-A chromatin varies on different human chromosomes, and imply that alpha satellite array size may be a more prominent predictor of CENP-A incorporation than chromosome size. In addition, our results also suggest that cancer transformation and amounts of centromeric heterochromatin have notable effects on the amount of alpha satellite that is associated with CENP-A chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CENP-A:

Centromere protein A

CCD:

Charged coupled device

CHEF:

Contour-clamped homogenous electric field

ChIP:

Chromatin immunoprecipitation

CSK buffer:

Cytoskeleton buffer

DNA:

Deoxyribonucleic acid

E7:

E7 protein subunit of HPV

FISH:

Fluorescence in situ hybridization

FITC:

Fluorescein isothiocyanate

FBS:

Fetal bovine serum

HAT:

Hypoxanthine/aminopterin/thymidine

HPV:

Human papillomavirus

HOR:

Higher order repeat

HSAX:

Homo sapiens chromosome X

HSAY:

Homo sapiens chromosome Y

Kb:

Kilobase

MEM:

Minimal essential medium

Mb:

Megabase

PCR:

Polymerase chain reaction

PVDF:

Polyvinylidene fluoride

Rb:

Retinoblastoma protein

RPMI:

Roswell Park Memorial Institute medium

PFGE:

Pulsed field gel electrophoresis

SDS:

Sodium dodecyl sulfate

References

  • Abruzzo MA, Griffin DK, Millie EA, Sheean LA, Hassold TJ (1996) The effect of Y-chromosome alpha-satellite array length on the rate of sex chromosome disomy in human sperm. Hum Genet 97:819–823

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8:R148

    Article  PubMed  Google Scholar 

  • Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3:6

    Article  PubMed  Google Scholar 

  • Amato A, Schillaci T, Lentini L, Di Leonardo A (2009) CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol Cancer 8:119

    Article  PubMed  Google Scholar 

  • Bashamboo A, Rahman MM, Prasad A, Chandy SP, Ahmad J, Ali S (2005) Fate of SRY, PABY, DYS1, DYZ3 and DYZ1 loci in Indian patients harbouring sex chromosomal anomalies. Mol Hum Reprod 11:117–127

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 3:1–11

    Article  Google Scholar 

  • Brinkley BR, Ouspenski I, Zinkowski RP (1992) Structure and molecular organization of the centromere–kinetochore complex. Trends Cell Biol 2:15–21

    Article  PubMed  CAS  Google Scholar 

  • Cherry LM, Faulkner AJ, Grossberg LA, Balczon R (1989) Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J Cell Sci 92(Pt 2):281–289

    PubMed  Google Scholar 

  • Chueh AC, Wong LH, Wong N, Choo KH (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937

    Article  PubMed  CAS  Google Scholar 

  • Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2:275–282

    Article  PubMed  CAS  Google Scholar 

  • Floridia G, Zatterale A, Zuffardi O, Tyler-Smith C (2000) Mapping of a human centromere onto the DNA by topoisomerase II cleavage. EMBO Rep 1:489–493

    PubMed  CAS  Google Scholar 

  • Gonzalo S, Blasco MA (2005) Role of Rb family in the epigenetic definition of chromatin. Cell Cycle 4:752–755

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7:420–428

    Article  PubMed  CAS  Google Scholar 

  • Grimes BR, Rhoades AA, Willard HF (2002) Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 5:798–805

    Article  PubMed  CAS  Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15:345–355

    Article  PubMed  CAS  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315

    Article  PubMed  CAS  Google Scholar 

  • Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KH, Saffery R (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12:805–815

    Article  PubMed  CAS  Google Scholar 

  • Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS (2008) Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 181:587–594

    Article  PubMed  CAS  Google Scholar 

  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103:4186–4191

    Article  PubMed  CAS  Google Scholar 

  • Lo AW, Liao GC, Rocchi M, Choo KH (1999) Extreme reduction of chromosome-specific alpha-satellite array is unusually common in human chromosome 21. Genome Res 9:895–908

    Article  PubMed  CAS  Google Scholar 

  • Lo AWI, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KHA (2001) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457

    Article  PubMed  CAS  Google Scholar 

  • Maggert KA, Karpen GH (2001) The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628

    PubMed  CAS  Google Scholar 

  • Mahtani MM, Willard HF (1990) Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics 7:607–613

    Article  PubMed  CAS  Google Scholar 

  • Mahtani MM, Willard HF (1998) Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 8:100–110

    PubMed  CAS  Google Scholar 

  • Manning AL, Longworth MS, Dyson NJ (2010) Loss of pRB causes centromere dysfunction and chromosomal instability. Genes Dev 24:1364–1376

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Sullivan LL, Reeves JW, Yan CM, Kopf KS, Farr CJ, Schueler MG, Sullivan BA (2009) Histone modifications within the human X centromere region. PLoS ONE 4:e6602

    Article  PubMed  Google Scholar 

  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63:4417–4421

    PubMed  CAS  Google Scholar 

  • Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14:507–522

    Article  PubMed  CAS  Google Scholar 

  • Oakey R, Tyler-Smith C (1990) Y chromosome DNA haplotyping suggests that most European and Asian men are descended from one to two males. Genomics 7:325–330

    Article  PubMed  CAS  Google Scholar 

  • Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20:529–533

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Scott KC, Merrett SL, Willard HF (2006) A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 16:119–129

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui H, Fox SR, Gunawardena RW, Knudsen ES (2007) Loss of RB compromises specific heterochromatin modifications and modulates HP1alpha dynamics. J Cell Physiol 211:131–137

    Article  PubMed  CAS  Google Scholar 

  • Sims JK, Houston SI, Magazinnik T, Rice JC (2006) A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin. J Biol Chem 281:12760–12766

    Article  PubMed  CAS  Google Scholar 

  • Song IY, Palle K, Gurkar A, Tateishi S, Kupfer GM, Vaziri C (2010) Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J Biol Chem 285:31525–31536

    Article  PubMed  CAS  Google Scholar 

  • Spence JM, Critcher R, Ebersole TA, Valdivia MM, Earnshaw WC, Fukagawa T, Farr CJ (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 21:5269–5280

    Article  PubMed  CAS  Google Scholar 

  • Sullivan B, Warburton P (1999) Studying the progression of vertebrate chromosomes through mitosis by immunofluorescence and FISH. In: Bickmore W (ed) Chromosome structural analysis: a practical approach. IRL Press, Oxford, pp 81–101

    Google Scholar 

  • Tomkiel J, Cooke CA, Saitoh H, Bernat RL, Earnshaw WC (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125:531–545

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Matsushita K, Yamaguchi S, Oohashi T, Shimada H, Ochiai T, Yoda K, Nomura F (2003) Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res 63:3511–3516

    PubMed  CAS  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  Google Scholar 

  • Warburton PE, Greig GM, Haaf T, Willard HF (1991) PCR amplification of chromosome-specific alpha satellite DNA: definition of centromeric STS markers and polymorphic analysis. Genomics 11:324–333

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1987) Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res 15:7549–7569

    Article  PubMed  CAS  Google Scholar 

  • Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA 86:9394–9398

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Waye JS (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3:192–198

    Article  CAS  Google Scholar 

  • Zeng K, de las Heras JI, Ross A, Yang J, Cooke H, Shen MH (2004) Localisation of centromeric proteins to a fraction of mouse minor satellite DNA on a mini-chromosome in human, mouse and chicken cells. Chromosoma 113:84–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cyrus Vaziri (University of North Carolina, Chapel Hill) for providing cell lines DIP3 and DIP3-E7 and Chris Shaw for technical assistance. This work was supported in part by grants from the American Cancer Society (ACS IRG-72-001-29-IRG), March of Dimes Foundation (6-FY06-377 and 6-FY10-294), and NIH NIGMS (R01 GM069514) to BAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A. Sullivan.

Additional information

Responsible Editor: Conly Rieder

Lori L. Sullivan and Christopher D. Boivin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, L.L., Boivin, C.D., Mravinac, B. et al. Genomic size of CENP-A domain is proportional to total alpha satellite array size at human centromeres and expands in cancer cells. Chromosome Res 19, 457–470 (2011). https://doi.org/10.1007/s10577-011-9208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9208-5

Keywords

Navigation