Skip to main content
Log in

Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

To improve light propagation through the retina, the rod nuclei of nocturnal mammals are uniquely changed compared to the nuclei of other cells. In particular, the main classes of chromatin are segregated in them and form regular concentric shells in order; inverted in comparison to conventional nuclei. A broad study of the epigenetic landscape of the inverted and conventional mouse retinal nuclei indicated several differences between them and several features of general interest for the organization of the mammalian nuclei. In difference to nuclei with conventional architecture, the packing density of pericentromeric satellites and LINE-rich chromatin is similar in inverted rod nuclei; euchromatin has a lower packing density in both cases. A high global chromatin condensation in rod nuclei minimizes the structural difference between active and inactive X chromosome homologues. DNA methylation is observed primarily in the chromocenter, Dnmt1 is primarily associated with the euchromatic shell. Heterochromatin proteins HP1-alpha and HP1-beta localize in heterochromatic shells, whereas HP1-gamma is associated with euchromatin. For most of the 25 studied histone modifications, we observed predominant colocalization with a certain main chromatin class. Both inversions in rod nuclei and maintenance of peripheral heterochromatin in conventional nuclei are not affected by a loss or depletion of the major silencing core histone modifications in respective knock-out mice, but for different reasons. Maintenance of peripheral heterochromatin appears to be ensured by redundancy both at the level of enzymes setting the epigenetic code (writers) and the code itself, whereas inversion in rods rely on the absence of the peripheral heterochromatin tethers (absence of code readers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B1:

Abundant mouse SINE repeat family

CKO:

Conditional knockout

DAPI:

4′,6-diamidino-2-phenylindole

DNMT1:

DNA (cytosine-5)-methyltransferase 1

DOP-PCR:

Degenerate oligonucleotide-primed PCR

ES cells:

Embryonic stem cells

FISH:

Fluorescence in situ hybridization

G9a:

H3K9 methyltransferase

GCL:

Ganglion cell layer

HP1:

Heterochromatin binding protein 1

INL:

Inner nuclear layer

KMTase:

Histone-lysine N-methyltransferase

L1:

Abundant mouse LINE repeat family

LBR:

Lamin B receptor

LINE:

Long interspersed nuclear elements

5mc:

5-methylcytosine

5hmc:

5-hydroxymethylcytosine

MSR:

Major satellite repeat

RNA Pol-II CTDx:

non-phosphorylated carboxy-terminal domain of RNA polymerase II

RNA Pol-II Ser2ph:

Phosphorylated serine 2 of heptapeptide repeat on carboxy-terminal domain of RNA, polymerase II

RNA Pol-II Ser5ph:

Phosphorylated serine 5 of heptapeptide repeat on carboxy-terminal domain of RNA, polymerase II

SEM:

Scanning electron microscopy

SINE:

Short interspersed nuclear elements

TEM:

Transmission electron microscopy

Xa:

X active chromosome

Xi:

X inactive chromosome

Xist:

X inactive specific transcript

References

  • Abe K, Naruse C, Kato T, Nishiuchi T, Saitou M, Asano M (2011) Loss of heterochromatin protein 1 gamma reduces the number of primordial germ cells via impaired cell cycle progression in mice. Biol Reprod 85:1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Almouzni G, Probst AV (2011) Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2:332–338

    Article  PubMed  Google Scholar 

  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. Embo J 28:3785–3798

    Article  PubMed  CAS  Google Scholar 

  • Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonça D, Rosa AC, Carmo-Fonseca M (2001) Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 12:3563–3572

    Article  PubMed  CAS  Google Scholar 

  • Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S, Ahmed K et al (2012) Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell 47:203–214

    Article  PubMed  CAS  Google Scholar 

  • Chen TL, Manuelidis L (1989) SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98:309–316

    Article  PubMed  CAS  Google Scholar 

  • Cheutin T, McNairn AJ, Jenuwein T, Gilbert DM, Singh PB, Misteli T (2003) Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science 299:721–725

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Grasser F, Lanctot C, Muller S, Neusser M, Zinner R, Solovei I, Cremer T (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Dambacher S, Hahn M, Schotta G (2010) Epigenetic regulation of development by histone lysine methylation. J Hered (Edinb) 105:24–37

    Article  CAS  Google Scholar 

  • Eberhart A, Kimura H, Leonhardt H, Joffe B, Solovei I (2012) Reliable detection of epigenetic histone marks and nuclear proteins in tissue cryosections. Chromosome Res 20(7):849–858

    Article  PubMed  CAS  Google Scholar 

  • Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung MS et al (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  PubMed  CAS  Google Scholar 

  • Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sandoval A, Towbin BD, Gasser SM (2013) The formation and sequestration of heterochromatin during development. Febs J 280(14):3212–3219

    Article  PubMed  CAS  Google Scholar 

  • Hahn M, Dambacher S, Dulev S, Kuznetsova AY, Eck S, Worz S, Sadic D, Schulte M, Mallm JP, Maiser A, Debs P, von Melchner H, Leonhardt H, Schermelleh L, Rohr K, Rippe K, Storchova Z, Schotta G (2013) Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 27:859–872

    Article  PubMed  CAS  Google Scholar 

  • Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T, Tsurimoto T, Tachibana M, Shinkai Y, Kurumizaka H, Nozaki N, Kimura H (2011) Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–6488

    Article  PubMed  CAS  Google Scholar 

  • Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmuller A, Picaud S, Zoghbi HY, Trottier Y, Tora L, Devys D (2006) Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction. PLoS Biol 4:e67

    Article  PubMed  Google Scholar 

  • Hirano Y, Hizume K, Kimura H, Takeyasu K, Haraguchi T, Hiraoka Y (2012) Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J Biol Chem 287:42654–42663

    Article  PubMed  CAS  Google Scholar 

  • Jack AP, Bussemer S, Hahn M, Punzeler S, Snyder M, Wells M, Csankovszki G, Solovei I, Schotta G, Hake SB (2013) H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization. PLoS One 8:e51765

    Article  PubMed  CAS  Google Scholar 

  • Joffe B, Leonhardt H, Solovei I (2010) Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 20:562–569

    Article  PubMed  CAS  Google Scholar 

  • Kadriu B, Guidotti A, Chen Y, Grayson DR (2012) DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol 520:1951–1964

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Yamazaki R, Onishi A, Sanuki R, Furukawa T (2012) G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells. J Neurosci 32:17658–17670

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Hayashi-Takanaka Y, Goto Y, Takizawa N, Nozaki N (2008) The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct Funct 33:61–73

    Article  PubMed  CAS  Google Scholar 

  • Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS, Janssen H, Amendola M, Nolen LD, Bickmore WA, van Steensel B (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192

    Article  PubMed  CAS  Google Scholar 

  • Kiseleva E, Rutherford S, Cotter LM, Allen TD, Goldberg MW (2001) Steps of nuclear pore complex disassembly and reassembly during mitosis in early Drosophila embryos. J Cell Sci 114:3607–3618

    PubMed  CAS  Google Scholar 

  • Kizilyaprak C, Spehner D, Devys D, Schultz P (2010) In vivo chromatin organization of mouse rod photoreceptors correlates with histone modifications. PLoS One 5:e11039

    Article  PubMed  Google Scholar 

  • Kizilyaprak C, Spehner D, Devys D, Schultz P (2011) The linker histone H1C contributes to the SCA7 nuclear phenotype. Nucleus 2:444–454

    Article  PubMed  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400

    Article  PubMed  CAS  Google Scholar 

  • Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB, Schubeler D (2011) Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7:e1002090

    Article  PubMed  CAS  Google Scholar 

  • Maison C, Bailly D, Roche D, Montes de Oca R, Probst AV, Vassias I, Dingli F, Lombard B, Loew D, Quivy JP, Almouzni G (2011) SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat Genet 43:220–227

    Article  PubMed  CAS  Google Scholar 

  • Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST (2006) Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem 281:22062–22072

    Article  PubMed  CAS  Google Scholar 

  • Makatsori D, Kourmouli N, Polioudaki H, Shultz LD, McLean K, Theodoropoulos PA, Singh PB, Georgatos SD (2004) The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Biol Chem 279:25567–25573

    Article  PubMed  CAS  Google Scholar 

  • Mehta IS, Bridger JM, Kill IR (2010) Progeria, the nucleolus and farnesyltransferase inhibitors. Biochem Soc Trans 38:287–291

    Article  PubMed  CAS  Google Scholar 

  • Meister P, Towbin BD, Pike BL, Ponti A, Gasser SM (2010) The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev 24:766–782

    Article  PubMed  CAS  Google Scholar 

  • Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430

    Article  PubMed  Google Scholar 

  • Nasonkin IO, Lazo K, Hambright D, Brooks M, Fariss R, Swaroop A (2011) Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. J Comp Neurol 519:1914–1930

    Article  PubMed  CAS  Google Scholar 

  • Nasonkin IO, Merbs SL, Lazo K, Oliver VF, Brooks M, Patel K, Enke RA, Nellissery J, Jamrich M, Le YZ, Bharti K, Fariss RN, Rachel RA, Zack DJ, Rodriguez-Boulan EJ, Swaroop A (2013) Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis. Development 140:1330–1341

    Article  PubMed  CAS  Google Scholar 

  • Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 19:221–233

    Article  PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, Jenuwein T (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150:948–960

    Article  PubMed  CAS  Google Scholar 

  • Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK, Borowsky M, Lee JT (2012) Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22:1864–1876

    Article  PubMed  CAS  Google Scholar 

  • Popova EY, Grigoryev SA, Fan Y, Skoultchi AI, Zhang SS, Barnstable CJ (2013) Developmentally regulated linker histone h1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. J Biol Chem 288(24):17895–17907

    Article  PubMed  CAS  Google Scholar 

  • Popova EY, Xu X, DeWan AT, Salzberg AC, Berg A, Hoh J, Zhang SS, Barnstable CJ (2012) Stage and gene specific signatures defined by histones H3K4me2 and H3K27me3 accompany mammalian retina maturation in vivo. PLoS One 7:e46867

    Article  PubMed  CAS  Google Scholar 

  • Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 19:625–638

    Article  PubMed  CAS  Google Scholar 

  • Rao RC, Tchedre KT, Malik MT, Coleman N, Fang Y, Marquez VE, Chen DF (2010) Dynamic patterns of histone lysine methylation in the developing retina. Invest Ophthalmol Vis Sci 51:6784–6792

    Article  PubMed  Google Scholar 

  • Reese BE, Tan SS (1998) Clonal boundary analysis in the developing retina using X-inactivation transgenic mosaic mice. Semin Cell Dev Biol 9:285–292

    Article  PubMed  CAS  Google Scholar 

  • Rhee KD, Yu J, Zhao CY, Fan G, Yang XJ (2012) Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival. Cell Death Dis 3:e427

    Article  PubMed  CAS  Google Scholar 

  • Ronneberger O, Baddeley D, Scheipl F, Verveer PJ, Burkhardt H, Cremer C, Fahrmeir L, Cremer T, Joffe B (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: problems, methods, pitfalls. Chromosome Res 16:523–562

    Article  PubMed  CAS  Google Scholar 

  • Saint-Andre V, Batsche E, Rachez C, Muchardt C (2011) Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons. Nat Struct Mol Biol 18:337–344

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22:2048–2061

    Article  PubMed  CAS  Google Scholar 

  • She SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 45:327–343

    Article  Google Scholar 

  • She SR, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49:931–937

    Article  Google Scholar 

  • Shinkai Y, Tachibana M (2011) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25:781–788

    Article  PubMed  CAS  Google Scholar 

  • Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, Roska B (2012) Transcriptional code and disease map for adult retinal cell types. Nat Neurosci 15(487–495):S481–S482

    Google Scholar 

  • Solovei I (2010) Fluorescence in situ hybridization (FISH) on tissue cryosections. Methods Mol Biol 659:71–82

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  PubMed  CAS  Google Scholar 

  • Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Matsumura Y, Fukuda M, Kimura H, Shinkai Y (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. Embo J 27:2681–2690

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791

    Article  PubMed  CAS  Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AM, Davison V, O’Neill LP, Turner BM (2010) Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 11:R110

    Article  PubMed  CAS  Google Scholar 

  • Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947

    Article  PubMed  CAS  Google Scholar 

  • Towbin BD, Meister P, Pike BL, Gasser SM (2010) Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol 75:555–565

    Article  PubMed  CAS  Google Scholar 

  • Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391

    Article  PubMed  CAS  Google Scholar 

  • Vogel MJ, Guelen L, de Wit E, Peric-Hupkes D, Lodén M, Talhout W, Feenstra M, Abbas B, Classen AK, van Steensel B (2006) Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 16:1493–1504

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Joffe B, Bolzer A, Albiez H, Benedetti PA, Muller S, Speicher MR, Cremer T, Cremer M, Solovei I (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet Genome Res 114:367–378

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  PubMed  CAS  Google Scholar 

  • Xhemalce B, Kouzarides T (2010) A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes Dev 24:647–652

    Article  PubMed  CAS  Google Scholar 

  • Yamamizu K, Fujihara M, Tachibana M, Katayama S, Takahashi A, Hara E, Imai H, Shinkai Y, Yamashita JK (2012) Protein kinase A determines timing of early differentiation through epigenetic regulation with G9a. Cell Stem Cell 10:759–770

    Article  PubMed  CAS  Google Scholar 

  • Zalokar M, Erk I (1977) Phase-partition fixation and staining of Drosophila eggs. Stain Technol 52:89–95

    PubMed  CAS  Google Scholar 

  • Zheng MH, Shi M, Pei Z, Gao F, Han H, Ding YQ (2009) The transcription factor RBP-J is essential for retinal cell differentiation and lamination. Mol Brain 2:38

    Article  PubMed  Google Scholar 

  • Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642–654

    Article  PubMed  CAS  Google Scholar 

  • Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H (2012) DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149:1474–1487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Sandra Hake for anti-H3K56me3 antibody. This study was supported by DFG (SO1054 to IS, JO903 to BJ, HE1853 SFB/TR5 to HL). Work in the GS lab was funded by SFB-TR5 chromatin, SFB684, and BMBF. EK was supported by the Program for Basic Research of the RAS Presidium (6.12, Molecular and Cellular biology) and by a grant from the Russian Foundation for Basic Research. TF was supported by Takeda Science Foundation and Uehara Memorial Foundation. HK was supported by Grants-in-aid from the MEXT of Japan and JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Solovei.

Additional information

Responsible Editor: Dr. Beth Sullivan.

Anja Eberhart and Yana Feodorova contributed equally to this work.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2044 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhart, A., Feodorova, Y., Song, C. et al. Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Res 21, 535–554 (2013). https://doi.org/10.1007/s10577-013-9375-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9375-7

Keywords

Navigation