Skip to main content
Log in

Polyploidy in the Arabidopsis genus

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Whole genome duplication (WGD), which gives rise to polyploids, is a unique type of mutation that duplicates all the genetic material in a genome. WGD provides an evolutionary opportunity by generating abundant genetic “raw material,” and has been implicated in diversification, speciation, adaptive radiation, and invasiveness, and has also played an important role in crop breeding. However, WGD at least initially challenges basic biological functions by increasing cell size, altering relationships between cell volume and DNA content, and doubling the number of homologous chromosome copies that must be sorted during cell division. Newly polyploid lineages often have extensive changes in gene regulation, genome structure, and may suffer meiotic or mitotic chromosome mis-segregation. The abundance of species that persist in nature as polyploids shows that these problems are surmountable and/or that advantages of WGD might outweigh drawbacks. The molecularly especially tractable Arabidopsis genus has several ancient polyploidy events in its history and contains several independent more recent polyploids. This genus can thus provide important insights into molecular aspects of polyploid formation, establishment, and genome evolution. The ability to integrate ecological and evolutionary questions with molecular and genetic understanding makes comparative analyses in this genus particularly attractive and holds promise for advancing our general understanding of polyploid biology. Here, we highlight some of the findings from Arabidopsis that have given us insights into the origin and evolution of polyploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

WGD:

Whole genome duplication

References

  • Adams K, Wendel J (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543

    CAS  PubMed  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams KL, Percifield R, Wendel JF (2004) Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168:2217–2226

    CAS  PubMed Central  PubMed  Google Scholar 

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Albertin W, Brabant P, Catrice O et al (2005) Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics 5:2131–2139

    CAS  PubMed  Google Scholar 

  • Amoutzias GD, He Y, Gordon J, Mossialos D, Oliver SG, Van de Peer Y (2010) Posttranslational regulation impacts the fate of duplicated genes. Proc Natl Acad Sci USA 107:2967–2971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andalis AA, Storchova Z, Styles C, Galitski T, Pellman D, Fink GR (2004) Defects arising from whole-genome duplications in Saccharomyces cerevisiae. Genetics 167:1109–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    CAS  PubMed  Google Scholar 

  • Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140–146

    CAS  PubMed  Google Scholar 

  • Aury JM, Jaillon O, Duret L et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    CAS  PubMed  Google Scholar 

  • Avivi L (1976) The effect of genes controlling different degrees of homoeologous pairing on quadrivalent frequency in induced autotetraploid lines of Triticum longissimum. Can J Genet Cytol 18:357–364

    Google Scholar 

  • Beaulieu J, Jean M, Belzile F (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp. petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281:421–435

    CAS  PubMed  Google Scholar 

  • Beck JB, Al-Shehbaz IA, O’Kane SL Jr, Schaal BA (2007) Further insights into the phylogeny of Arabidopsis (Brassicaceae) from nuclear Atmyb2 flanking sequence. Mol Phylogenet Evol 42:122–130

    CAS  PubMed  Google Scholar 

  • Bento M, Tomás D, Viegas W, Silva M (2013) Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species. Cytogenet Genome Res 140:286–294

    CAS  PubMed  Google Scholar 

  • Bhatt AM, Lister C, Page T, Fransz P, Findlay K et al (1999) The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J 19:463–472

    CAS  PubMed  Google Scholar 

  • Birchler JA (2010) Reflections on studies of gene expression in aneuploids. Biochem J 426:119–123

    CAS  PubMed  Google Scholar 

  • Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99:247–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci USA 109:14746–14753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blakeslee AF (1922) Variations in Datura due to changes in chromosome number. Am Nat 56:16–31

    Google Scholar 

  • Blakeslee AF (1934) New Jimson Weeds from old chromosomes. J Hered 24:81–108

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME (1920) Chromosomal duplication and Mendelian phenomena in Datura mutants. Science 52:388–390

    CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blomme T, Vendepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    PubMed Central  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P et al (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236

    PubMed Central  PubMed  Google Scholar 

  • Börner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    CAS  PubMed  Google Scholar 

  • Bridges CB (1925) Sex in relation to chromosomes and genes. Am Nat 59:127–137. doi:10.2307/2456354

    Google Scholar 

  • Buggs RJ, Elliott NM, Zhang L et al (2010) Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus. New Phytol 186:175–183

    CAS  PubMed  Google Scholar 

  • Buggs RJA, Zhang L, Miles N et al (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr Biol 21:551–556

    CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    PubMed Central  PubMed  Google Scholar 

  • Carvalho A, Delgado M, Barao A et al (2010) Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. Sex Plant Reprod 23:29–37

    CAS  PubMed  Google Scholar 

  • Casneuf T, De Bodt S, Raes J, Maere S, Van de Peer Y (2006) Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol 7:R13

    PubMed Central  PubMed  Google Scholar 

  • Chang PL, Dilkes BP, McMahon M et al (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11:R125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chao D-Y, Dilkes B, Luo H et al (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 11:2124–2136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ, Comai L, Pikaard CS (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci U S A 95:14891–14896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ, Wang J, Tian L et al (2004) The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biol J Linn Soc 82:689–700

    Google Scholar 

  • Church SA, Spaulding EJ (2009) Gene expression in a wild autopolyploid sunflower series. J Hered 100:491–495

    CAS  PubMed  Google Scholar 

  • Cifuentes M, Grandont L, Moore G, Chevre AM, Jenczewski E (2010) Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:29–36

    CAS  PubMed  Google Scholar 

  • Coate JE, Schlueter JA, Whaley AM, Doyle JJ (2011) Comparative evolution of photosynthetic genes in response to polyploid and nonpolyploid duplication. Plant Phys 155:2081–2095

    CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    CAS  PubMed  Google Scholar 

  • Comai L, Tyagi AP, Winter K et al (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Comai L, Tyagi A, Lysak M (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosom Res 11:217–226

    CAS  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    CAS  PubMed  Google Scholar 

  • Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Can J Bot 82:185–197

    Google Scholar 

  • De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci USA 110:2898–2903

    PubMed Central  PubMed  Google Scholar 

  • De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826

    PubMed Central  PubMed  Google Scholar 

  • Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. Plos Biol 3:e314

    PubMed Central  PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH et al (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    CAS  PubMed  Google Scholar 

  • Earley K, Lawrence RJ, Pontes O et al (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chrom Res 17:699–717

    CAS  PubMed  Google Scholar 

  • Fawcett JA, Van de Peer Y (2010) Angiosperm polyploids and their road to evolutionary success. Trends Ecol Evol 2:e3

    Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with doubled genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feldman M, Liu B, Segal G et al (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cuñado M, Franklin FCH (2012) Interhomolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet 8:e1002507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct modes of expression evolution. BMC Biol 6:16

    PubMed Central  PubMed  Google Scholar 

  • Foote T, Roberts M, Kurata N, Sasaki T, Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental or by transposition. Annu Rev Plant Biol 60:433–453

    CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    CAS  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaeta RT, Yoo S-Y, Pires JC et al (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS One 4:e4760

    PubMed Central  PubMed  Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24:2298–2309

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Mukai Y (1993) Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gout J-F, Kahn D, Duret L, Paramecium Post-Genomics Consortium (2010) The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet 6(5):e1000944

    PubMed Central  PubMed  Google Scholar 

  • Grandont L, Jenczewski E, Lloyd A (2013) Meiosis and its deviations in polyploid plants. Cytogenet Genome Res 140:171–184

    CAS  PubMed  Google Scholar 

  • Grant V (1971) Plant speciation, 1st edn. Columbia University Press, New York

    Google Scholar 

  • Greer E, Martín AC, Pendle A et al (2012) The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell 24:152–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths S, Sharp R, Foote T et al (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    CAS  PubMed  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X et al (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    CAS  PubMed  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo H, Lee T-H, Wang X, Paterson AH (2013) Function relaxation followed by diversifying selection after whole genome duplication in flowering plants. Plant Phys 162:769–778

    CAS  Google Scholar 

  • Ha M, Lu J, Tian L et al (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagerup O (1932) Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Hereditas 16:19–40

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    CAS  PubMed  Google Scholar 

  • Hazzouri KM, Mohajer A, Dejak SI, Otto SP, Wright SI (2008) Insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. Genetics 179:581–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hegarty M, Coate J, Sherman-Broyles S, Abbott R, Hiscock S, Doyle J (2013) Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res 140:204–225

    CAS  PubMed  Google Scholar 

  • Henderson IR (2012) Control of meiotic recombination frequency in plant genomes. Curr Op Plant Biol 15:556–561

    CAS  Google Scholar 

  • Henry IM, Dilkes BP, Young K et al (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170:1979–1988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry I, Dilkes B, Comai L (2006) Molecular karyotyping and aneuploidy detection in Arabidopsis thaliana using quantitative fluorescent polymerase chain reaction. Plant J 48:307–319

    CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Comai L (2007) Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 3:e70

    PubMed Central  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Tyagi AP et al (2009) Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity 103:458–468

    CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Miller ES et al (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Tyagi AP, et al. (2014) The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell. AOP (in press)

  • Higashi H, Ikeda H, Setoguchi H (2012) Population fragmentation causes randomly fixed genotypes in populations of Arabidopsis kamchatica in the Japanese Archipelago. J Plant Res 125:223–233

    PubMed  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Higgins JD, Wright KM, Bomblies K, Franklin FCH (2013) Cytological techniques to analyze meiosis in Arabidopsis arenosa for invesitgating adaptation to polyploidy. Front Plant Sci 4:546

    PubMed Central  Google Scholar 

  • Hilpert G (1957) Effects of selection for meiotic behaviour in autotetraploid rye. Hereditas 43:318–322

    Google Scholar 

  • Hoffmann MH (2005) Evolution of the realized climatic niche in the genus: Arabidopsis (Brassicaceae). Evolution 59:1425–1436

    PubMed  Google Scholar 

  • Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K (2012) Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8:e1003093

    PubMed Central  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    PubMed Central  PubMed  Google Scholar 

  • Huettel B, Kreil DP, Matzke M, Matzke AJM (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4:e1000226

    PubMed Central  PubMed  Google Scholar 

  • Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch IJ et al (eds) Plant genome diversity, vol 2. Springer, Wien, pp 255–276

    Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    CAS  PubMed  Google Scholar 

  • Jakobsson M, Hagenblad J, Tavare S et al (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol Biol Evol 23:1217–1231

    CAS  PubMed  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A et al (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang A, Gan L, Tu Y, Ma H, Zhang J, Song Z, He Y, Cai D, Xue X (2013a) The effect of genome duplication on seed germination and seedling growth of rice under salt stress. Aust J Crop Sci 12:1814–1821

    Google Scholar 

  • Jiang W-K, Liu Y-L, Xia E-H, Gao L-Z (2013b) Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Phys 161:1844–1861

    CAS  Google Scholar 

  • Jørgensen MH, Ehrich D, Schmickl R et al (2011) Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol Biol 11:346

    PubMed Central  PubMed  Google Scholar 

  • Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328

    CAS  PubMed  Google Scholar 

  • Juahar P (1970) Chromosome behaviour and fertility of the raw and evolved synthetic tetraploids of pearl millet, Pennisetum typhoides Stapf et Hubb. Genetika 41:407–424

    Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    CAS  PubMed  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:6272–6277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Köhler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148

    PubMed  Google Scholar 

  • Koonin EV, Federova ND, Jackson JD et al (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7

    PubMed Central  PubMed  Google Scholar 

  • Lavania UC (1985) High bivalent frequencies in artificial autopolyploids of Hyoscyamus muticus L. Can J Genet Cytol 28:7–11

    Google Scholar 

  • Lavania UC, Srivastava S, Lavania S et al (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549

    CAS  PubMed  Google Scholar 

  • Le Comber SC, Ainouche ML, Kovarik A, Leitch AR (2010) Making a functional diploid: from polysomic to disomic inheritance. New Phytol 186:113–122

    PubMed  Google Scholar 

  • Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee EA, Darrah LL, Coe EH (1996) Dosage effects on morphological and quantitative traits in maize aneuploids. Genome 39:898–908

    CAS  PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Google Scholar 

  • Levin D (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Liu B, Brubaker C, Mergeai G et al (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    CAS  PubMed  Google Scholar 

  • Löve A (1953) Subarctic polyploidy. Hereditas 39:113–124

    Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer, Sunderland

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    CAS  PubMed  Google Scholar 

  • Madlung A (2013) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madlung A, Wendel JF (2013) Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res 140:270–285

    CAS  PubMed  Google Scholar 

  • Madlung A, Masuelli RW, Watson B et al (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B et al (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    CAS  PubMed  Google Scholar 

  • Madlung A, Henkhaus N, Jurevic L et al (2012) Natural variation and persistent developmental instabilities in geographically diverse accessions of the allopolyploid Arabidopsis suecica. Physiol Plant 144:123–133

    CAS  PubMed  Google Scholar 

  • Maere S, De Bodt S, Raes J et al (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao L, Van Hemert JL, Dash S, Dickerson JA (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinforma 10:346

    Google Scholar 

  • Matsushita SC, Tyagi AP, Thornton GM et al (2012) Allopolyploidization lays the foundation for evolution of distinct populations: evidence from analysis of synthetic Arabidopsis allohexaploids. Genetics 191:535–547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ et al (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    CAS  PubMed  Google Scholar 

  • McHale NA (1983) Environmental induction of high frequency 2n pollen formation in diploid Solanum. Can J Genet Cytol 25:609–615

    Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204

    CAS  PubMed  Google Scholar 

  • Mézard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: plants have their say. Trends Genet 23:91–99

    PubMed  Google Scholar 

  • Mittelsten Scheid O, Jakovleva L, Afsar K et al (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93:7114–7119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mummenhoff K, Hurka H (1995) Allopolyploid origin of Arabidopsis suecica (Fries) Norrlin: evidence from chloroplast and nuclear genome markers. Bot Acta 108:449–456

    CAS  Google Scholar 

  • Murray BG, Sieber VK, Jackson RC (1984) Further evidence for the presence of meiotic pairing control genes in Alopecurus L. (Gramineae). Genetica 63:13–19

    Google Scholar 

  • Myers WM (1945) Meiosis in autotetraploid Lolium perenne in relation to chromosomal behavior in autopolyploids. Bot Gaz 106:304–316

    Google Scholar 

  • Negri V, Lemmi G (1998) Effect of selection and temperature stress on the production of 2 n gametes in. Lotus tenuis. Plant Breed 117:345–349

    Google Scholar 

  • O’Kane SRJ, Schaal BA, Al-Shehbaz IA (1996) The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst Bot 21:559–566

    Google Scholar 

  • Oswald BP, Nuismer SL (2011) A unified model of autopolyploid establishment and evolution. Am Nat 178:687–700

    PubMed Central  PubMed  Google Scholar 

  • Otto S, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    CAS  PubMed  Google Scholar 

  • Ozkan H, Tuna M, Galbraith DW (2006) No DNA loss in autotetraploids of Arabidopsis thaliana. Plant Breed 125:288–291

    CAS  Google Scholar 

  • Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    CAS  PubMed  Google Scholar 

  • Parisod C, Salmon A, Zerjal T et al (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    CAS  PubMed  Google Scholar 

  • Parisod C, Alix K, Just J et al (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    CAS  PubMed  Google Scholar 

  • Paterson A (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetica 123:191–196

    CAS  PubMed  Google Scholar 

  • Paterson AH, Chapman BA, Kissinger JC, Bowers JE, Feltus FA, Estill JC (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22:597–602

    CAS  PubMed  Google Scholar 

  • Pecinka A, Fang W, Rehmsmeier M et al (2011) Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 9:24

    PubMed Central  PubMed  Google Scholar 

  • Pécrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62:3587–3597

    PubMed  Google Scholar 

  • Petit M, Guidat C, Daniel J et al (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    CAS  PubMed  Google Scholar 

  • Pignatta D, Dilkes BP, Yoo SY et al (2010) Differential sensitivity of the Arabidopsis thaliana transcriptome and enhancers to the effects of genome doubling. New Phytol 186:194–206

    CAS  PubMed  Google Scholar 

  • Pikaard CS (1999) Nucleolar dominance and silencing of transcription. Trends Plant Sci 4:478–483

    PubMed  Google Scholar 

  • Pires JC, Zhao JW, Schranz ME et al (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Google Scholar 

  • Polatschek A (1965) Cytotaxonomische Beiträge zur Flora der Ostalpenländer, I. Öterr Botan Zeitschrifft 113:1–46

    Google Scholar 

  • Pontes O, Neves N, Silva M et al (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pontvianne F, Blevins T, Chandrasekhara C et al (2012) Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes Dev 26:945–957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preuss SB, Costa-Nunes P, Tucker S et al (2008) Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins. Mol Cell 32:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Rapp R, Udall J, Wendel J (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18

    PubMed Central  PubMed  Google Scholar 

  • Riddle NC, Kato A, Birchler J (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111

    PubMed  Google Scholar 

  • Riddle N, Jang H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross-Ibarra J, Wright SI, Foxe JP et al (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3:e2411

    PubMed Central  PubMed  Google Scholar 

  • Sanchez-Moran E, Santos JL, Jones GH, Franklin FCH (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FCH, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165:1533–1540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmickl R, Koch MA (2011) Arabidopsis hybrid speciation processes. Proc Natl Acad Sci USA 108:14192–14197

    PubMed Central  PubMed  Google Scholar 

  • Schmickl R, Jørgensen MH, Brysting AK, Koch MA (2010) The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 10:98

    PubMed Central  PubMed  Google Scholar 

  • Schmickl R, Paule J, Klein J et al (2012) The evolutionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the Western Carpathian center of species and genetic diversity. PLoS One 7:e42691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot Lond 93:317–321

    CAS  Google Scholar 

  • Scholz H (1962) Nomenklatorische und systematische Studien an Cardaminopsis arenosa (L.) Hayek. Willdenowia 3:137–149

    Google Scholar 

  • Sémon M, Wolfe KM (2007) Consequences of genome duplication. Curr Op Genet Dev 17:505–512

    PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H et al (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheltzer JM, Torres EM, Dunham MJ, Amon A (2012) Transcriptional consequences of aneuploidy. Proc Natl Acad Sci USA 109:12644–12649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu KK, Fujii S, Marhold K et al (2005) Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, New combinations. Acta Phytotaxon Geobot 56:163–172

    Google Scholar 

  • Shimizu-Inatsugi R, Lihová J, Iwanaga H et al (2009) The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol 18:4024–4048

    CAS  PubMed  Google Scholar 

  • Siegel JJ, Amon A (2012) New Insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol 28:189–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since Plant speciation. New Phytol 161:173–191

    Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW et al (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava S, Lavania UC, Sybenga J (1992) Genetic variation in meiotic behavior and fertility in tetraploid Hyoscyamus muticus: correlation with diploid meiosis. Heredity 68:231–239

    Google Scholar 

  • Stack SM, Roelofs D (1996) Localized chiasmata and meiotic nodules in the tetraploid onion Allium porrum. Genome 39:770–783

    CAS  PubMed  Google Scholar 

  • Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Nat 74:54–66

    Google Scholar 

  • Stebbins GJ (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Steinitz-Sears LM (1963) Chromosome studies in Arabidopsis thaliana. Genetics 48:483–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storchova Z, Breneman A, Cande J et al (2006) Genome-wide genetic analysis of polyploidy in yeast. Nature 443:541–547

    CAS  PubMed  Google Scholar 

  • Stupar RM, Bhaskar PB, Yandell BS et al (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sybenga J (1973) Allopolyploidization of autopolyploids 2. Manipulation of the chromosome pairing system. Euphytica 22:433–444

    Google Scholar 

  • Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were enriched in dose-sensitive genes removed preferentially from one homeolog leaving clusters. Genome Res 16:934–946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    CAS  PubMed  Google Scholar 

  • Walia H, Josefsson C, Dilkes B et al (2009) Dosage-dependent deregulation of an AGAMOUS-LIKE gene cluster contributes to interspecific incompatibility. Curr Biol 19:1128–1132

    CAS  PubMed  Google Scholar 

  • Wang J, Tian L, Madlung A et al (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Tian L, Lee HS et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W-K, Ho C-W, Hung K-H et al (2010) Multilocus analysis of genetic divergence between outcrossing Arabidopsis species: evidence of genome-wide admixture. New Phytol 188:488–500

    PubMed  Google Scholar 

  • Wang Z, Wang M, Liu L, Meng F (2013) Physiological and proteomic responses of diploid and tetraploid black locust (Robinia pseudoacacia L.) subjected to salt stress. Int J Mol Sci 14:20299–20325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterhouse RM, Zdobnov EM, Kriventseva EV (2011) Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi. Genome Biol Evol 3:75–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    CAS  PubMed  Google Scholar 

  • Wolf PG, Soltis PS, Soltis DE (1989) Tetrasomic inheritance and chromosome pairing behavior in the naturally occurring autotetraploid Heuchera grossulariifolia (Saxifragaceae). Genome 32:655–659

    Google Scholar 

  • Wright KM, Pires JC, Madlung A (2009) Mitotic instability in resynthesized and natural polyploids of the genus Arabidopsis (Brassicaceae). Am J Bot 96:1656–1664

    CAS  PubMed  Google Scholar 

  • Yant L, Hollister JD, Wright KM et al (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2156

    CAS  PubMed  Google Scholar 

  • Yu Z, Haage K, Streit VE et al (2009) A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor Appl Genet 118:1107–1119

    CAS  PubMed  Google Scholar 

  • Yu Z, Haberer G, Matthes M et al (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Natl Acad Sci USA 107:17809–17814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zielinski M-L, Mittelsten Scheid O (2012) Meiosis in polyploid plants. In: Soltis PS and Soltis DE (eds.) Polyploidy and genome evolution (pp 33–55). Springer

Download references

Acknowledgments

We thank Nancy Kleckner, Levi Yant, James Higgins, Chris Franklin, and the members of the Bomblies lab for helpful discussions. Research in the Madlung lab is supported by funding from the National Science Foundation (grant 1118539 to A.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bomblies.

Additional information

Responsible Editors: Martin Lysak and Paul Fransz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bomblies, K., Madlung, A. Polyploidy in the Arabidopsis genus. Chromosome Res 22, 117–134 (2014). https://doi.org/10.1007/s10577-014-9416-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-014-9416-x

Keywords

Navigation