Skip to main content
Log in

Living in shear: platelets protect cancer cells from shear induced damage

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Pharmacologically and genetically induced thrombocytopenia is associated with decreased metastasis, highlighting the importance of platelets in the bloodborne dissemination of cancer cells. It is frequently suggested that platelets support metastasis, in part, by protecting cancer cells from shear stress, a biomechanical force generated by blood flow. However, there is currently no evidence to support this hypothesis. To address this, we investigated the effect of shear stress on A2780 ovarian cancer cells in the presence and absence of platelets. Using a cone and plate viscometer, suspensions of A2780 cells with and without platelets were exposed to shear rates representing venous (200 s−1) and arterial (1,500 s−1) blood flow. Lactate dehydrogenase (LDH) release was used to quantify shear induced membrane damage. Both venous and arterial shear rates induced the release of LDH from A2780 cells, demonstrating their susceptibility to shear forces. In contrast, platelets released minimal levels of LDH in response to similar conditions. In the presence of platelets, there was a significant decrease in LDH release by A2780 cells under shear conditions, suggesting that platelets can confer protection against shear induced damage. The disruption of platelet–cancer cell interactions could increase the shear stress induced destruction of cancer cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stone RL et al (2012) Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 366(7):610–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ho-Tin-Noe B et al (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68(16):6851–6858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Camerer E et al (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104(2):397–401

    Article  CAS  PubMed  Google Scholar 

  4. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61(1):46–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jain S, Russell S, Ware J (2009) Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 7(10):1713–1717

    Article  CAS  PubMed  Google Scholar 

  6. Jain S et al (2007) Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci USA 104(21):9024–9028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kim YJ et al (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95(16):9325–9330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Alonso-Escolano D et al (2004) Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol 141(2):241–252

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Jurasz P, Alonso-Escolano D, Radomski MW (2004) Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol 143(7):819–826

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Jurasz P et al (2003) Matrix metalloproteinase-2 contributes to increased platelet reactivity in patients with metastatic prostate cancer: a preliminary study. Thromb Res 112(1–2):59–64

    Article  PubMed  Google Scholar 

  11. Jurasz P et al (2001) Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Res 61(1):376–382

    CAS  PubMed  Google Scholar 

  12. Karpatkin S, Ambrogio C, Pearlstein E (1988) The role of tumor-induced platelet aggregation, platelet adhesion and adhesive proteins in tumor metastasis. Prog Clin Biol Res 283:585–606

    CAS  PubMed  Google Scholar 

  13. Karpatkin S et al (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81(4):1012–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Karpatkin S et al (1982) Platelet aggregating material (PAM) of two virally-transformed tumors: SV3T3 mouse fibroblast and PW20 rat renal sarcoma. Role of cell surface sialylation. Prog Clin Biol Res 89:445–477

    CAS  PubMed  Google Scholar 

  15. Nieswandt B et al (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59(6):1295–1300

    CAS  PubMed  Google Scholar 

  16. Zheng S et al (2009) Platelets and fibrinogen facilitate each other in protecting tumor cells from natural killer cytotoxicity. Cancer Sci 100(5):859–865

    Article  CAS  PubMed  Google Scholar 

  17. Palumbo JS et al (2005) Platelets and fibrin (ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185

    Article  CAS  PubMed  Google Scholar 

  18. Placke T et al (2011) Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 72(2):440–448

    Article  PubMed  Google Scholar 

  19. Placke T, Kopp HG, Salih HR (2011) Modulation of natural killer cell anti-tumor reactivity by platelets. J Innate Immun 3(4):374–382

    Article  CAS  PubMed  Google Scholar 

  20. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lowe KL, Navarro-Nunez L, Watson SP (2012) Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 129(Suppl 1):S30–S37

    Article  CAS  PubMed  Google Scholar 

  22. Dvoretsky PM et al (1988) Distribution of disease at autopsy in 100 women with ovarian cancer. Hum Pathol 19(1):57–63

    Article  CAS  PubMed  Google Scholar 

  23. Egan K et al (2011) Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS ONE 6(10):e26125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nylander S et al (2004) Synergistic action between inhibition of P2Y12/P2Y1 and P2Y12/thrombin in ADP- and thrombin-induced human platelet activation. Br J Pharmacol 142(8):1325–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Cattaneo M et al (1993) Shear-induced platelet aggregation is potentiated by desmopressin and inhibited by ticlopidine. Arterioscler Thromb 13(3):393–397

    Article  CAS  PubMed  Google Scholar 

  26. Berezovskaya O et al (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer Res 65(6):2378–2386

    Article  CAS  PubMed  Google Scholar 

  27. Rhim AD et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148(1–2):349–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zong W (2006) Thompson, CB, Necrotic death as a cell fate. Genes Dev 20(1):1–15

    Article  CAS  PubMed  Google Scholar 

  29. Coleman ML et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3(4):339–345

    CAS  PubMed  Google Scholar 

  30. Lawler K et al (2006) Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol 291(4):C668–C677

    CAS  PubMed  Google Scholar 

  31. Lawler K et al (2009) Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci 100(6):1082–1087

    Article  CAS  PubMed  Google Scholar 

  32. Qazi H, Shi ZD, Tarbell JM (2011) Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS ONE 6(5):e20348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chang SF et al (2008) Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc Natl Acad Sci USA 105(10):3927–3932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Brooks DE (1984) The biorheology of tumor cells. Biorheology 21(1–2):85–91

    CAS  PubMed  Google Scholar 

  35. Wei X et al (2005) Real-time detection of circulating apoptotic cells by in vivo flow cytometry. Mol Imaging 4(4):415–416

    PubMed Central  PubMed  Google Scholar 

  36. Wyckoff JB et al (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60(9):2504–2511

    CAS  PubMed  Google Scholar 

  37. Corti R et al (2004) Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17(1):35–44

    Article  CAS  PubMed  Google Scholar 

  38. Fuster V et al (2005) Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 46(6):937–954

    Article  PubMed  Google Scholar 

  39. Malek AM, Alper SL, Izumo S (1999) Hemodynesamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Article  CAS  PubMed  Google Scholar 

  40. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23

    Article  CAS  PubMed  Google Scholar 

  41. Lawler K et al (2004) Shear stress modulates the interaction of platelet-secreted matrix proteins with tumor cells through the integrin alphavbeta3. Am J Physiol Cell Physiol 287(5):C1320–C1327

    CAS  PubMed  Google Scholar 

  42. Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA 109(51):20808–20813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Trabert B et al (2014) Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: a pooled analysis in the Ovarian Cancer Association Consortium. J Natl Cancer Inst 106(2):djt431

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported through the National Biophotonics and Imaging Platform, Ireland, and funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, and National Development Plan 2007–2013. NC is funded by a grant from Science Foundation Ireland (SFI) as part of the Biomedical Diagnostics Institute for Science Excellence and Technology (CSET), Grant Number: 10/CE/B1821.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Kenny.

Additional information

Karl Egan and Niamh Cooke are joint first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egan, K., Cooke, N. & Kenny, D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis 31, 697–704 (2014). https://doi.org/10.1007/s10585-014-9660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9660-7

Keywords

Navigation