Skip to main content

Advertisement

Log in

STC1 expression is associated with tumor growth and metastasis in breast cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line. To investigate its significance, stable clones with STC1 down-regulation using shRNA were generated in both tumor models. The consequences of STC1 down-regulation on cell proliferation, chemotactic invasion, tumor growth and metastasis were assessed. Down-regulation of STC1 in the 4T1 murine mammary tumor cells had a major impact on mammary tumor growth. This observation was replicated in a second tumor model with the MDA-MB-231 human breast cancer line, with a significant reduction in primary tumor formation and a major inhibition of metastasis as well. Interestingly, in both models, proliferation in vitro was not affected. Subsequent microarray gene expression profiling identified 30 genes to be significantly altered by STC1 down-regulation, the majority of which are associated with known hallmarks of carcinogenesis. Furthermore, bioinformatic analysis of breast cancer datasets revealed that high expression of STC1 is associated with poor survival. This is the first study to show definitively that STC1 plays an oncogenic role in breast cancer, and indicates that STC1 could be a potential therapeutic target for treatment of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BLI:

Bioluminescence intensity

STC1:

Stanniocalcin-1

shRNA:

Short hairpin RNA

siRNA:

Small interfering RNA

FCS:

Fetal calf serum

qRT-PCR:

Quantitative reverse transcriptase PCR

PCR:

Polymerase chain reaction

GAPDH:

Glyceraldehydes 3-phosphate dehydrogenase

SCID:

Severe combined immunodeficiency

References

  1. Eckhardt BL, Francis PA, Parker BS et al (2012) Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov 11:479–497

    Article  CAS  PubMed  Google Scholar 

  2. Chang AC, Jellinek DA, Reddel RR (2003) Mammalian stanniocalcins and cancer. Endocr Relat Cancer 10:359–373

    Article  CAS  PubMed  Google Scholar 

  3. Yeung BH, Law AY, Wong CK (2012) Evolution and roles of stanniocalcin. Mol Cell Endocrinol 349:272–280

    Article  CAS  PubMed  Google Scholar 

  4. Roch GJ, Sherwood NM (2011) Stanniocalcin has deep evolutionary roots in eukaryotes. Genome Biol Evol 3:284–294

    Article  CAS  PubMed  Google Scholar 

  5. Wagner GF, Fenwick JC, Park CM et al (1988) Comparative biochemistry and physiology of teleocalcin from sockeye and coho salmon. Gen Comp Endocrinol 72:237–246

    Article  CAS  PubMed  Google Scholar 

  6. Sundell K, Bjornsson BT, Itoh H et al (1992) Chum salmon (Oncorhynchus keta) stanniocalcin inhibits in vitro calcium uptake in Atlantic cod (Gadus morhua). J Comp Physiol B 162:489–495

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen A, Chang AC, Reddel RR (2009) Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress. Oncogene 28:1982–1992

    Article  CAS  PubMed  Google Scholar 

  8. Zhang K, Lindsberg PJ, Tatlisumak T et al (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA 97:3637–3642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Roddy GW, Rosa RH Jr, Youn OhJ et al (2012) Stanniocalcin-1 rescued photoreceptor degeneration in two rat models of inherited retinal degeneration. Mol Ther 20:788–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kanellis J, Bick R, Garcia G et al (2004) Stanniocalcin-1, an inhibitor of macrophage chemotaxis and chemokinesis. Am J Physiol Renal Physiol 286:F356–F362

    Article  CAS  PubMed  Google Scholar 

  11. Liu G, Yang G, Chang B et al (2010) Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst 102:812–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Welcsh PL, Lee MK, Gonzalez-Hernandez RM et al (2002) BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci U S A 99:7560–7565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Charpentier AH, Bednarek AK, Daniel RL et al (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 60:5977–5983

    CAS  PubMed  Google Scholar 

  14. Bouras T, Southey MC, Chang AC et al (2002) Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res 62:1289–1295

    CAS  PubMed  Google Scholar 

  15. Raulic S, Ramos-Valdes Y, Dimattia GE (2008) Stanniocalcin 2 expression is regulated by hormone signalling and negatively affects breast cancer cell viability in vitro. J Endocrinol 197:517–529

    Article  CAS  PubMed  Google Scholar 

  16. Eckhardt BL, Parker BS, van Laar RK et al (2005) Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix. Mol Cancer Res 3:1–13

    CAS  PubMed  Google Scholar 

  17. Chang XZ, Li DQ, Hou YF et al (2007) Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Br Cancer Res 9:R76

    Article  Google Scholar 

  18. Sloan EK, Pouliot N, Stanley KL et al (2006) Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:R20

    Article  PubMed Central  PubMed  Google Scholar 

  19. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  20. Lelekakis M, Moseley JM, Martin TJ et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  CAS  PubMed  Google Scholar 

  21. Jellinek DA, Chang AC, Larsen MR et al (2000) Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem J 350:453–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kao J, Salari K, Bocanegra M et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4:e6146

    Article  PubMed Central  PubMed  Google Scholar 

  23. Guo F, Li Y, Wang J et al (2013) Stanniocalcin1 (STC1) inhibits cell proliferation and invasion of cervical cancer cells. PLoS One 8:e53989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sheikh-Hamad D (2010) Mammalian stanniocalcin-1 activates mitochondrial antioxidant pathways: new paradigms for regulation of macrophages and endothelium. Am J Physiol Renal Physiol 298:F248–F254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Murai R, Tanaka M, Takahashi Y et al (2014) Stanniocalcin-1 promotes metastasis in a human breast cancer cell line through activation of PI3K. Clin Exp Metastasis 31:787

    Article  CAS  PubMed  Google Scholar 

  26. Daniel AR, Lange CA (2009) Protein kinases mediate ligand-independent derepression of sumoylated progesterone receptors in breast cancer cells. Proc Natl Acad Sci USA 106:14287–14292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pena C, Cespedes MV, Bradic Lindh M et al (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73:1287–1297

    Article  CAS  PubMed  Google Scholar 

  28. Fujiwara Y, Sugita Y, Nakamori S et al (2000) Assessment of stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol 16:799–804

    CAS  PubMed  Google Scholar 

  29. Tohmiya Y, Koide Y, Fujimaki S et al (2004) Stanniocalcin-1 as a novel marker to detect minimal residual disease of human leukemia. Tohoku J Exp Med 204:125–133

    Article  CAS  PubMed  Google Scholar 

  30. Wascher RA, Huynh KT, Giuliano AE et al (2003) Stanniocalcin-1: a novel molecular blood and bone marrow marker for human breast cancer. Clin Cancer Res 9:1427–1435

    CAS  PubMed  Google Scholar 

  31. Nakagawa T, Martinez SR, Goto Y et al (2007) Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clin Cancer Res 13:4105–4110

    Article  CAS  PubMed  Google Scholar 

  32. Liao D, Corle C, Seagroves TN et al (2007) Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67:563–572

    Article  CAS  PubMed  Google Scholar 

  33. Yeung HY, Lai KP, Chan HY et al (2005) Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 146:4951–4960

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  35. Azalea-Romero M, Gonzalez-Mendoza M, Caceres-Perez AA et al (2012) Low expression of stem cell antigen-1 on mouse haematopoietic precursors is associated with erythroid differentiation. Cell Immunol 279:187–195

    Article  CAS  PubMed  Google Scholar 

  36. Labarge MA (2013) Breaking the canon: indirect regulation of Wnt signaling in mammary stem cells by MMP3. Cell Stem Cell 13:259–260

    Article  CAS  PubMed  Google Scholar 

  37. Xiong J, Du Q, Liang Z (2010) Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 29:4980–4988

    Article  CAS  PubMed  Google Scholar 

  38. Sribenja S, Wongkham S, Wongkham C et al (2013) Roles and mechanisms of β-thymosins in cell migration and cancer metastasis: an update. Cancer Invest 31:103–110

    Article  CAS  PubMed  Google Scholar 

  39. Britschgi A, Radimerski T, Bentires-Alj M (2013) Targeting PI3K, HER2 and the IL-8/JAK2 axis in metastatic breast cancer: which combination makes the whole greater than the sum of its parts? Drug Resist Updat 16:68–72

    Article  CAS  PubMed  Google Scholar 

  40. Papadopoulos MC, Saadoun S, Verkman AS (2008) Aquaporins and cell migration. Pflugers Arch 456:693–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dumitru CA, Bankfalvi A, Gu X et al (2013) AHNAK and inflammatory markers predict poor survival in laryngeal carcinoma. PLoS One 8:e56420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Maeda M, Hasegawa H, Hyodo T et al (2011) ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility. Mol Biol Cell 22:3840–3852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Goebel G, Berger R, Strasak AM et al (2012) Elevated mRNA expression of CHAC1 splicing variants is associated with poor outcome for breast and ovarian cancer patients. Br J Cancer 106:189–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Korpal M, Ell BJ, Buffa FM et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Yang WC, Tsai WC, Lin PM et al (2013) Human BDH2, an anti-apoptosis factor, is a novel poor prognostic factor for de novo cytogenetically normal acute myeloid leukemia. J Biomed Sci 20:58

    Article  PubMed Central  PubMed  Google Scholar 

  46. Godoy P, Cadenas C, Hellwig B et al (2014) Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer 21:491–499

    Article  PubMed  Google Scholar 

  47. Schreiber R, Uliyakina I, Kongsuphol P et al (2010) Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tani K, Fujiyoshi Y (2014) Water channel structures analysed by electron crystallography. Biochim Biophys Acta 1840:1605–1613

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki T, Toyohara T, Akiyama Y et al (2011) Transcriptional regulation of organic anion transporting polypeptide SLCO4C1 as a new therapeutic modality to prevent chronic kidney disease. J Pharm Sci 100:3696–3707

    Article  CAS  PubMed  Google Scholar 

  50. Kottgen A, Glazer NL, Dehghan A et al (2009) Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41:712–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Koizumi K, Hoshiai M, Ishida H et al (2007) Stanniocalcin 1 prevents cytosolic Ca(2+) overload and cell hypercontracture in cardiomyocytes. Circ J 71:796–801

    Article  CAS  PubMed  Google Scholar 

  52. Durukan Tolvanen A, Westberg JA, Serlachius M et al (2013) Stanniocalcin 1 is important for poststroke functionality, but dispensable for ischemic tolerance. Neuroscience 229:49–54

    Article  CAS  PubMed  Google Scholar 

  53. Yoneda T, Tanaka S, Hata K (2013) Role of RANKL/RANK in primary and secondary breast cancer. World J Orthop 4:178–185

    Article  PubMed Central  PubMed  Google Scholar 

  54. Chang AC, Janosi J, Hulsbeek M et al (1995) A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol 112:241–247

    Article  CAS  PubMed  Google Scholar 

  55. Saidak Z, Boudot C, Abdoune R et al (2009) Extracellular calcium promotes the migration of breast cancer cells through the activation of the calcium sensing receptor. Exp Cell Res 315:2072–2080

    Article  CAS  PubMed  Google Scholar 

  56. Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a Project Grant (APP633262) from the National Health and Medical Research Council of Australia, and by an Australian National Breast Cancer Foundation Fellowship to RLA. We thank Dr ZL Ou for the MDA-MB-231HM cells, Dr Joey Lai for microarray analysis and Dr Erdahl Teber for bioinformatics assistance. We also thank Dr Belinda Parker for generating the data in Supplementary Fig. 1a.

Conflict of interest

The authors declare no competing interests and this manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Anderson.

Additional information

Andy C-M Chang and Judy Doherty have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

a Average STC1 and STC2 mRNA levels from 6 individual primary tumors samples generated from three lines of the 4T1 model. RTA relative transcript abundance (arbitrary units) as measured by qRT-PCR and compared to GAPDH levels. b Gene expression of STC1 and STC2 derived from the cDNA microarray dataset of 52 cell lines from Kao et al [22]. Data from three cell lines available in our laboratory are shown (PPTX 69 KB)

Fig. 2

Tumor growth and metastasis of control and STC1 reduced 4T1ch9 tumors. a Primary tumor growth. b Average time to resection of primary tumors. c Visual metastasis score for each mouse. n = 13 for control tumors and n = 11 for STC1 reduced tumors (PPTX 120 KB)

Fig. 3

Hematoxylin and eosin stained sections of primary mammary tumors isolated from SCID mice injected with MDA-MB-231HM-luc non-silencing control (#758) and STC1 knockdown (#339 and #858) clones (PPTX 841 KB)

Fig. 4

Bioluminescence imaging of metastasis to the thorax of mice bearing MDA-MB231HM-luc mammary tumors at 42 days after implantation. Primary tumors were masked to enable imaging of metastases to thoracic region (PPTX 566 KB)

Fig. 5

To validate the microarray data, the expression levels of 11 genes randomly selected were analyzed by qRT-PCR and found to display similar expression profiles to those in the microarray data. STC1 and GAPDH were used as reference. PCR for each gene was done in triplicate reactions (PPTX 65 KB)

Supplementary material 6 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, A.CM., Doherty, J., Huschtscha, L.I. et al. STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin Exp Metastasis 32, 15–27 (2015). https://doi.org/10.1007/s10585-014-9687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9687-9

Keywords

Navigation