Skip to main content

Advertisement

Log in

Changes of the Intestinal Microbiota, Short Chain Fatty Acids, and Fecal pH in Patients with Colorectal Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

New molecular biology-based methods of bacterial identification are expected to help elucidate the relationship between colorectal cancer (CRC) and intestinal microbiota. Although there is increasing evidence revealing the potential role of microbiota in CRC, it remains unclear whether microbial dysbiosis is the cause or the result of CRC onset.

Aim

We investigated the changes of intestinal environments in CRC or adenoma.

Methods

We analyzed 13 groups of microbiota, 8 types of organic acids, and pH in feces obtained from the following 3 groups: individuals with CRC, adenoma, and non-adenoma. Ninety-three patients with CRC and 49 healthy individuals (22 with adenoma and 27 without adenoma) were enrolled.

Results

The counts of total bacteria (10.3 ± 0.7 vs. 10.8 ± 0.3 log10 cells/g of feces; p < 0.001), 5 groups of obligate anaerobe, and 2 groups of facultative anaerobes were significantly lower in the CRC group than in the healthy individuals. While the concentrations of short chain fatty acids (SCFAs) were significantly decreased in the CRC group, the pH was increased in the CRC group (7.4 ± 0.8 vs. 6.9 ± 0.6; p < 0.001). Comparison among the CRC, adenoma, and non-adenoma groups revealed that fecal SCFAs and pH in the adenoma group were intermediate to the CRC group and the non-adenoma group. Within the CRC group, no differences in microbiota or organic acids were observed among Dukes stages.

Conclusions

CRC patients showed significant differences in the intestinal environment, including alterations of microbiota, decreased SCFAs, and elevated pH. These changes are not a result of CRC progression but are involved in CRC onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359.

    Article  PubMed  CAS  Google Scholar 

  2. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–169.

    Article  PubMed  CAS  Google Scholar 

  3. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  4. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80.

    Article  PubMed  Google Scholar 

  5. Bjorksten B, Sepp E, Julge K, et al. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol.. 2001;108:516–520.

    Article  PubMed  CAS  Google Scholar 

  6. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031.

    Article  PubMed  Google Scholar 

  7. Rawls JF. Enteric infection and inflammation alter gut microbial ecology. Cell Host Microbe. 2007;22:73–74.

    Article  Google Scholar 

  8. Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol. 2004;70:7220–7228.

    Article  PubMed  CAS  Google Scholar 

  9. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638.

    Article  PubMed  Google Scholar 

  10. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008;57:1605–1615.

    Article  PubMed  CAS  Google Scholar 

  11. Ohara T, Yoshino K, Kitajima M. Possibility of preventing colorectal carcinogenesis with probiotics. Hepatogastroenterology. 2010;57:1411–1415.

    PubMed  Google Scholar 

  12. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE. 2011;6:e16393.

    Article  PubMed  CAS  Google Scholar 

  13. Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol. 2008;10:789–798.

    Article  PubMed  CAS  Google Scholar 

  14. Matsuda K, Tsuji H, Asahara T, et al. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environental Microbiol.. 2007;73:32–39.

    Article  CAS  Google Scholar 

  15. Matsuda K, Tsuji H, Asahara T, et al. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environental Microbiol.. 2009;75:1961–1969.

    Article  CAS  Google Scholar 

  16. Bird AR, Brown IL, Topping DL. Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol.. 2000;1:25–37.

    PubMed  CAS  Google Scholar 

  17. Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–243.

    Article  PubMed  CAS  Google Scholar 

  18. Tjalsma H, Scholler-Guinard M, Lasonder E, et al. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int J Cancer. 2006;119:2127–2135.

    Article  PubMed  CAS  Google Scholar 

  19. Ellmerich S, Djouder N, Scholler M, Klein JP. Production of cytokines by monocytes, epithelial and endothelial cells activated by Streptococcus bovis. Cytokine. 2000;12:26–31.

    Article  PubMed  CAS  Google Scholar 

  20. Hill MJ, Drasar BS, Hawksworth G, et al. Bacteria and aetiology of cancer of large bowel. Lancet. 1971;1:95–100.

    Article  PubMed  CAS  Google Scholar 

  21. Moore WE, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 1995;61:3202–3207.

    PubMed  CAS  Google Scholar 

  22. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35:S35–S38.

    Article  PubMed  CAS  Google Scholar 

  23. Augenlicht LH, Mariadason JM, Wilson A, et al. Short chain fatty acids and colon cancer. J Nutr. 2002;132:3804S–3808S.

    PubMed  Google Scholar 

  24. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–767.

    Article  PubMed  CAS  Google Scholar 

  25. Johnson IT, Lund EK. Review article: nutrition, obesity and colorectal cancer. Aliment Pharmacol Ther. 2007;26:161–181.

    Article  PubMed  CAS  Google Scholar 

  26. Matsubara N. Epigenetic regulation and colorectal cancer. Dis Colon Rectum. 2012;55:96–104.

    Article  PubMed  Google Scholar 

  27. Liu Z, Qin H, Yang Z, et al. Randomised clinical trial: the effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery—a double-blind study. Aliment Pharmacol Ther. 2011;33:50–63.

    Article  PubMed  CAS  Google Scholar 

  28. Gianotti L, Morelli L, Galbiati F, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 2010;16:167–175.

    Article  PubMed  CAS  Google Scholar 

  29. Worthley DL, Le Leu RK, Whitehall VL, et al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr. 2009;90:578–586.

    Article  PubMed  CAS  Google Scholar 

  30. Quintero E. Chemical or immunological tests for the detection of fecal occult blood in colorectal cancer screening? Gastroenterol Hepatol. 2009;32:565–576.

    Article  PubMed  Google Scholar 

  31. Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao L, Xu W, Ibrahim SA, et al. Effects of age and region on fecal microflora in elderly subjects living in Bama, Guangxi. China. Curr Microbiol.. 2011;62:64–70.

    Article  CAS  Google Scholar 

  33. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–1227.

    Article  PubMed  CAS  Google Scholar 

  34. Kikuchi H, Yamada T. Correlation between water-holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats. J Sci Food Agric. 1992;60:139–146.

    Article  CAS  Google Scholar 

  35. Matsuki T. Development of quantitative PCR detection method with 16S rRNA gene-targeted genus- and species-specific primers for the analysis of human intestinal microflora and its application. Nippon Saikingaku Zasshi. 2007;62:255–261.

    Article  PubMed  CAS  Google Scholar 

  36. Matsuki T, Watanabe K, Tanaka R, et al. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol. 1999;65:4506–4512.

    PubMed  CAS  Google Scholar 

  37. Matsuda K, Tsuji H, Asahara T, et al. Sensitive quantification of Clostridium difficile by reverse transcription—quantitative PCR (RT-qPCR) targeting rRNA molecules. Appl Environ Microbiol. 2012;78:5111–5118.

    Article  PubMed  CAS  Google Scholar 

  38. Kikuchi E, Miyamoto Y, Narushima S, et al. Design of species-specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. Microbiol Immunol. 2002;46:353–358.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the subjects who participated in this study. We also thank the nursing staff of the 10E Medical Examination Ward and 8E Surgery Ward in St. Luke’s International Hospital for their cooperation in the prompt collection and storage of fecal samples. We thank Norikatsu Yuki for technical help with the analysis of fecal samples. This study was supported in part by a grant from St. Luke’s Life Science Institute.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Ohigashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohigashi, S., Sudo, K., Kobayashi, D. et al. Changes of the Intestinal Microbiota, Short Chain Fatty Acids, and Fecal pH in Patients with Colorectal Cancer. Dig Dis Sci 58, 1717–1726 (2013). https://doi.org/10.1007/s10620-012-2526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2526-4

Keywords

Navigation