Skip to main content
Log in

Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Due to their ability to explore whole genome response to drugs and stressors, omics-based approaches are widely used in toxicology and ecotoxicology, and identified as powerful tools for future ecological risk assessment and environmental monitoring programs. Understanding the long-term effects of contaminants may indeed benefit from the coupling of genomics and eco-evolutionary hypotheses. Next-generation sequencing provides a new way to investigate pollutants impact, by targeting early responses, screening chemicals, and directly quantifying gene expression, even in organisms without reference genome. Lymnaea stagnalis is a freshwater mollusk in which access to genomic resources is critical for many scientific issues, especially in ecotoxicology. We used 454-pyrosequencing to obtain new transcriptomic resources in L. stagnalis and to preliminarily explore gene expression response to a redox-cycling pesticide, diquat. We obtained 151,967 and 128,945 high-quality reads from control and diquat-exposed individuals, respectively. Sequence assembly provided 141,999 contigs, of which 124,387 were singletons. BlastX search revealed significant match for 34.6 % of the contigs (21.2 % protein hits). KEGG annotation showed a predominance of hits with genes involved in energy metabolism and circulatory system, and revealed more than 400 putative genes involved in oxidative stress, cellular/molecular stress and signaling pathways, apoptosis, and metabolism of xenobiotics. Results also suggest that diquat may have a great diversity of molecular effects. Moreover, new genetic markers (putative SNPs) were discovered. We also created a Ensembl-like web-tool for data-mining (http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html). This resource is expected to be relevant for any genomic approach aimed at understanding the molecular basis of physiological and evolutionary responses to environmental stress in L. stagnalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adema CM, van Deutekom-Mulder EC, van der Knaap WP, Sminia T (1994) Schistosomial activities of Lymnaea stagnalis haemocytes: the role of oxygen radicals. Parasitology 109:479–485

    Article  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  Google Scholar 

  • Anton PM, Theodorou V, Roy S, Fioramonti J, Bueno L (2002) Pathways involved in mild gastrointestinal inflammation induced by a low level of exposure to a food contaminant. Dig Dis Sci 47:1308–1315

    Article  CAS  Google Scholar 

  • Aung W, Hasegawa S, Furukawa T, Saga T (2007) Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis 28:2047–2052

    Article  CAS  Google Scholar 

  • Baraňano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reducatse: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99:16093–16098

    Article  Google Scholar 

  • Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, Shen X, Busuttil RW, Yamashita K, Csizmadia E, Tyagi S, Otterbein LE, Brouard S, Tobiasch E, Bach FH, Kupiec-Weglinski JW, Soares MP (2003) Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB 17:1724–1726

    CAS  Google Scholar 

  • Bickham JW (2011) The four cornerstones of evolutionary toxicology. Ecotoxicology 20:497–502

    Article  CAS  Google Scholar 

  • Breitholtz M, Ruden C, Hansson SO, Bengtsson BE (2006) Ten challenges for improved ecotoxicological testing in environmental risk assessment. Ecotoxicol Environ Saf 63:324–335

    Article  CAS  Google Scholar 

  • Brown CD, van Beinum W (2009) Pesticide transport via sub-surface drains in Europe. Environ Pollut 157:3314–3324

    Article  CAS  Google Scholar 

  • Byzitter J, Lukowiak K, Karnik V, Dalesman S (2012) Acute combined exposure to heavy metals (Zn, Cd) blocks memory formation in a freshwater snail. Ecotoxicology 21:860–868

    Article  CAS  Google Scholar 

  • Carter K, Lukowiak K, Schenk JO, Sorg BA (2009) Repeated cocaine effects on learning, memory and extinction in the pond snail Lymnaea stagnalis. J Exp Biol 209:4273–4282

    Article  Google Scholar 

  • Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962

    Article  Google Scholar 

  • Coutellec MA, Barata C (2011) An introduction to evolutionary processes in ecotoxicology. Ecotoxicology 20:493–496

    Article  CAS  Google Scholar 

  • Coutellec MA, Caquet T (2011) Heterosis and inbreeding depression in bottlenecked populations: a test in the hermaphroditic freshwater snail Lymnaea stagnalis. J Evol Biol 24:2248–2257

    Article  Google Scholar 

  • Coutellec MA, Delous G, Cravedi JP, Lagadic L (2008) Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms. Chemosphere 73:326–336

    Article  CAS  Google Scholar 

  • Coutellec MA, Collinet C, Caquet T (2011) Parental exposure to pesticides and progeny reaction norm to a biotic stress gradient in the freshwater snail Lymnaea stagnalis. Ecotoxicology 20:534

    Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Davison A, Blaxter ML (2005) An expressed sequence tag survey of gene expression in the pond snail Lymnaea stagnalis, an intermediate vector of trematodes [corrected]. Parasitology 130:539–552

    Article  CAS  Google Scholar 

  • Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-g-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Intern 50:418–426

    Article  CAS  Google Scholar 

  • Ducrot V, Péry ARR, Lagadic L (2010) Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Phil Trans R Soc B 365:3485–3494

    Article  Google Scholar 

  • Emmett K (2002) Final risk assessment for diquat bromide. Washington State Department of Ecology, Washington, DC

    Google Scholar 

  • Feng ZP, Zhang Z, van Kesteren RE, Straub VA, van Nierop P, Jin K, Nejatbakhsh N, Goldberg JL, Spencer GE, Yeoman MS, Wildering W, Coorssen JR, Croll RP, Buck LT, Syed NI, Smit AB (2009) Transcriptome analysis of the central nervous system of the mollusk Lymnaea stagnalis. BMC Genomics 10:451

    Article  Google Scholar 

  • Great pond snail Contig Browser. http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521

    Article  CAS  Google Scholar 

  • Han ES, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. Physiol Genomics 34:112–126

    Article  CAS  Google Scholar 

  • Hendry AP, Farrugia TJ, Kinneson MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Article  Google Scholar 

  • Hoffer JNA, Ellers J, Koene JM (2010) Costs of receipt and donation of ejaculates in a simultaneous hermaphrodite. BMC Evol Biol 10:393

    Article  Google Scholar 

  • Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. Bioscience 50:217–226

    Article  Google Scholar 

  • Jones GM, Vale JA (2000) Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J Toxicol Clin Toxicol 38:123–128

    Article  CAS  Google Scholar 

  • Leroux S, Feve K, Vignoles F, Bouchez O, Klopp C, Noirot C, Gourichon D, Richard S, Leterrier C, Beaumont C, Minvielle F, Vignal A, Pitel F (2010) Non PCR-amplified Transcripts and AFLP(R)(R) fragments as reduced representations of the quail genome for 454 Titanium sequencing. BMC Res Notes 3:214

    Article  Google Scholar 

  • Mager WH, de Boer AH, Siderius MH, Voss HP (2000) Cellular responses to oxidative and osmotic stress. Cell Stress Chaperon 5:73–75

    Article  CAS  Google Scholar 

  • Mariette J, Noirot C, Klopp C (2011) Assessment of replicate bias in 454 pyrosequencing and a multi-purpose read-filtering tool. BMC Res Notes 4:149

    Article  Google Scholar 

  • Martyniuk CJ, Griffitt RJ, Denslow ND (2011) Omics in aquatic toxicology: not just another microarray. Environ Toxicol Chem 30:263–264

    Article  CAS  Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  Google Scholar 

  • Osburn WO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, Kensler TW (2006) Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys 454:7–15

    Article  CAS  Google Scholar 

  • Oshlack A, Robinson MD, Yound MD (2010) From RNAseq to differential expression results. Genome Biol 11:220

    Article  CAS  Google Scholar 

  • Perkins EJ, Chipman JK, Edwards S, Habib T, Falciani F, Taylor R, Van Aggelen G, Vulpe C, Antczak P, Loguinov A (2011) Reverse engineering adverse outcome pathways. Environ Toxicol Chem 30:22–38

    Article  CAS  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B et al (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  Google Scholar 

  • Poulsen HE, Jensen BR, Weimann A, Sorensen Jensen SA, Loft M (2000) Antioxidants, DNA damage and gene expression. Free Radical Res 33:S33–S39

    CAS  Google Scholar 

  • Raes J, Letunic I, Yamada T, Jensen LJ, Bork P (2011) Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7:473

    Article  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  CAS  Google Scholar 

  • Ritter AM, Shaw JL, Williams WM, Travis KZ (2000) Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. Probabilistic exposure estimates. Environ Toxicol Chem 19:749–759

    Article  CAS  Google Scholar 

  • Rodriguez-Gabriel MA, Watt S, Bähler J, Russel P (2006) Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol 26:6347–6356

    Article  CAS  Google Scholar 

  • Rogers LK, Bates CM, Welty SE, Smith CV (2006) Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice. Toxicol Appl Pharmacol 217:289–298

    Article  CAS  Google Scholar 

  • Russo J, Lefeuvre-Orfila L, Lagadic L (2007) Hemocyte-specific responses to the peroxidizing herbicide fomesafen in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata). Environ Pollut 146:420–427

    Article  CAS  Google Scholar 

  • Smith TB, Bernatchez L (2008) Evolutionary change in human-altered environments. Mol Ecol 17:1–8

    Article  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154

    Article  CAS  Google Scholar 

  • Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HI (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAK pathways? J Signal Transduct: Article ID 792639. doi:10.1155/2011/792639

  • Sun LY, Bokov AF, Richardson A, Miller RA (2011) Hepatic response to oxidative injury in long-lived Ames dwarf mice. FASEB 25:398–408

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (1995) R.E.D. Facts Diquat Bromide. National Center for Environmental Publications and Information, Cincinnati, OH 45242-0419 1995. Document EPA-738-F-95-015

  • Van Straalen NM, Roelofs D (2008) Genomics technology for assessing soil pollution. J Biol 7:19

    Article  Google Scholar 

  • Vera IC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647

    Article  CAS  Google Scholar 

  • Villeneuve DL, Garcia-Reyero N (2011) Predictive ecotoxicology in the 21th century. Environ Toxicol Chem 30:1–8

    Article  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  • Waring JF, Jolly RA, Ciurlionis R, Lum PK, Praestgaard JT, Morfitt DC, Buratto B, Roberts C, Schadt E, Ulrich RG (2001) Clustering of hepatotoxins based on mechanisms of toxicity using gene expression profiles. Toxicol Appl Pharmacol 175:28–42

    Article  CAS  Google Scholar 

  • Watanabe KH, Andersen ME, Basu N, Carvan MJ III, Crofton KM, King KA, Suňol C, Tiffany-Castiglioni E, Schultz IR (2011) Defining and modelling known adverse outcome pathways: domoic acid and neuronal signalling as a case study. Environ Toxicol Chem 30:9–21

    Article  CAS  Google Scholar 

  • Wood SA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project has been carried out with INRA financial support (EFPA Projet Innovant 2010; AIP Bioressources 2010, project EGELYS). AB is granted by the INRA (PhD, Contrat Jeune Scientifique). The authors thank Christophe Plomion for advices and insightful comments on the project and for critical reading of the manuscript, and Marc Collinet and the INRA U3E staff for technical assistance.

Ethical standards

The authors declare that the experiments were performed in compliance with current french laws.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Agnès Coutellec.

Additional information

Anthony Bouétard and Céline Noirot contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouétard, A., Noirot, C., Besnard, AL. et al. Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. Ecotoxicology 21, 2222–2234 (2012). https://doi.org/10.1007/s10646-012-0977-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-012-0977-1

Keywords

Navigation