Skip to main content

Advertisement

Log in

Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20–50 % weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35–40 % of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 % plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The computational docking studies suggested that polyethylene glycol and polystyrene present in the plastics might have good interaction towards the microbial lipase with stable binding and interacting forces which probably could be one of the reasons for the degradative mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Tubuly, A. A. (2000). SDS-PAGE and Western blotting. Methods in Molecular Medicine, 40, 391–405.

    CAS  Google Scholar 

  • Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364, 1977–1984.

    Article  CAS  Google Scholar 

  • Angkawidjaja, C., You, D. J., Matsumura, H., Kuwahara, K., Koga, Y., Takano, K., & Kanaya, S. (2007). Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation. FEBS Letters, 581(26), 5060–5064.

    Article  CAS  Google Scholar 

  • Anwar, M. S., Negi, H., Zaidi, M. G. H., Gupta, S., & Goel, R. (2013). Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortium. Brazilian Archives of Biology and Biotechnology, 56, 475–484.

    Article  CAS  Google Scholar 

  • Beveridge, T. J. (2001). Use of Gram stain in microbiology. Biotechnic & Histochemistry, 76, 111–118.

    Article  CAS  Google Scholar 

  • Bhardwaj, H., Gupta, R., & Tiwari, A. (2012). Microbial population associated with plastic degradation. Scientific Reports, 5, 272–274.

    Google Scholar 

  • Bosma, T., Damborský, J., Stucki, G., & Janssen, D. B. (2002). Biodegradation of 1, 2, 3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Applied and Environmental Microbiology, 68(7), 3582–3587.

    Article  CAS  Google Scholar 

  • Cao, Y. M., Xu, L., & Jia, L. Y. (2011). Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation. Nature Biotechnology, 29(1), 90–98.

    CAS  Google Scholar 

  • Cosgrove, L., McGeechan, P. L., Robson, G. D., & Handley, P. S. (2007). Fungal communities associated with degradation of polyester polyurethane in soil. Applied and Environmental Microbiology, 73(18), 5817–5824.

    Article  CAS  Google Scholar 

  • Dey, U., Mondal, N. K., Das, K., & Dutta, S. (2012). An approach to polymer degradation through microbes. ISOR Journal of Pharmacy, 2, 385–388.

    Google Scholar 

  • El-Fantroussi, S. (2000). Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives. Applied and Environmental Microbiology, 66, 5110–5115.

    Article  CAS  Google Scholar 

  • Geldreich, E. E., Nash, H. D., Reasoner, D. J., & Taylor, R. H. (1972). The necessity of controlling bacterial populations in potable waters: community water supply. Journal of the American Water Works Association, 64, 596–602.

    CAS  Google Scholar 

  • Gnanavel, G., JayaValli, M. V. P., Thirumarimurugan, M., & Kannadasan, T. (2012). Degradation of plastics using microorganisms. International Journal of Pharmaceutical and Chemical Sciences, 1, 691–694.

    Google Scholar 

  • Gu, J. D., Ford, T. E., Mitton, D. B., Mitchell, R. (2000). Microbial corrosion of metals. The Uhlig Corrosion Handbook. 2nd Edition, New York Wiley.

  • Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  • Hanson, J. R., Ackerman, C. E., & Scow, K. M. (1999). Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Applied and Environmental Microbiology, 65(11), 4788–4792.

    CAS  Google Scholar 

  • Hemashenpagam, N., Growther, L., Murgalatha, N., Raj, V. S., & Vimal, S. S. (2013). Isolation and characterization of a bacterium that degrades PBSA. International Journal of Pharma and Bio Sciences, 4, 335–342.

    CAS  Google Scholar 

  • Jayasiri, H. B., Purushothman, C. S., & Vennila, A. (2013). Plastic litter accumulation on high-water strandline of urban beaches in Mumbai, India. Environmental Monitoring and Assessments, 185, 7709–7719.

    Article  CAS  Google Scholar 

  • John, R. C., Essien, J. P., Akpan, S. B., & Okpokwasili, G. C. (2012). Polycyclic aromatic hydrocarbon-degrading bacteria from aviation fuel spill site at Ibeno, Nigeria. Bulletin of Environmental Contamination and Toxicology, 88, 1014–1019.

    Article  CAS  Google Scholar 

  • Jurtshuk, P., Jr., & McQuitty, D. N. (1976). Use of quantitative oxidase test for characterizing oxidative metabolism in bacteria. Applied and Environmental Microbiology, 31, 668–679.

    CAS  Google Scholar 

  • Kathiresan, K. (2003). Polythene and plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51(3), 629–634.

    CAS  Google Scholar 

  • Kim, M. N., Lee, S. H., Kim, W. G., & Weon, H. Y. (2007). Screening of microorganisms with high poly (butylene succinate-co-butylene adipate)-degrading activity. Korean Journal of Environmental Biology, 2, 267–272.

    Google Scholar 

  • Klein, P. D., Graham, D. Y., & Gaillour, A. (1991). Water source as risk factor for Helicobacter pylori infection in Peruvian children. The Lancet, 337, 1503–1506.

    Article  CAS  Google Scholar 

  • Kukreja, V., & Bera, B. (2005). Lipase from Pseudomonas aeroginosa MTCC 2488: partial purification, characterization and calcium dependent thermostability. Indian Journal of Biotechnology, 4, 222–226.

    CAS  Google Scholar 

  • Kyaw, B. M., Chmpakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52, 411–419.

    Article  CAS  Google Scholar 

  • Lee, Y. J., Kim, K. S., Kwon, Y. K., & Tak, R. B. (2003). Biochemical characteristics and antimicrobials susceptibility of Salmonella gallinarum isolated in Korea. Journal of Veterinary Science, 4(2), 161–166.

    Google Scholar 

  • Mossel, D. A. A., Mengerink, W. H. J., & Scholts, H. H. (1962). Use of modified MacConkey agar medium for the selective growth and enumeration of Enterobacteriaceae. Applied Microbiology, 84, 235–240.

    Google Scholar 

  • Nanda, S., Sahu, S. S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Sciences and Environmental Management, 14, 57–60.

    Article  CAS  Google Scholar 

  • Narancic, T., Djokica, L., Kennyb, S. T., O’Connorb, K. E., Radulovica, V., Nikodinovic-Runica, J., & Vasiljevic, B. (2012). Metabolic versatility of Gram-positive microbial isolates from contaminated river sediments. Journal of Hazardous Materials, 215, 243–251.

    Article  Google Scholar 

  • Obradors, N., & Aguilar, J. (1991). Efficient biodegradation of high-molecular weight polyethylene glycol by pure cultures of Pseudomonas stutzeri. Applied and Environmental Microbiology, 58, 2383–2388.

    Google Scholar 

  • Pattusamy, V., Nandini, N., Kumar, V. M., & Bheemappa, K. (2013). Water quality studies of Bellandur Lake, Urban Bangalore, Karnataka, India. International Journal of Advanced Research, 1, 77–82.

    Google Scholar 

  • Ramachandra, T. V., Alakananda, B., Rani, A., & Khan, M. A. (2011). Ecological and socio-economic assessment of Varthur wetland, Bengaluru (India). Journal of Environmental Science & Engineering, 53, 101–108.

    CAS  Google Scholar 

  • Ravikumar, P., Mehmood, M. A., & Somashekhar, R. K. (2013). Water quality index to determine the surface water quality of Sankey Tank and Mallathahalli Lake, Bangalore Urban District, Karnataka, India. Applied Water Sciences, 3, 247–261.

    Article  CAS  Google Scholar 

  • Ray, S. S., Bandyopadhyay, J., & Bousmina, M. (2007). Thermal and thermomechanical properties of poly(butylene succinate)-coadipatenanocomposite. Polymer Degradation and Stability, 92, 802–812.

    Article  CAS  Google Scholar 

  • Rengachari, S., Aschauer, P., Schittmayer, M., Mayer, N., Gruber, K., Breinbauer, R., Birner-Gruenberger, R., Dreveny, I., & Oberer, M. (2013). Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. Journal of Biological Chemistry, 288(43), 31093–31104.

    Article  CAS  Google Scholar 

  • Roy, P. K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., & Rajgopal, C. (2008). Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortia. Polymer Degradation and Stability, 93, 1917–1922.

    Article  CAS  Google Scholar 

  • Sah, A., Negi, H., Kapri, A., Anwar, S., & Goel, R. (2011). Comparative shelf life and efficacy of LDPE and PVC degrading bacterial consortia under bioformulation. Ekologija, 57, 55–61.

    Article  CAS  Google Scholar 

  • Sanders, E. R. (2012). Aseptic laboratory techniques: plating methods. Journal of Visualized Experiments, 11(63), e3064. doi:10.3791/3064.

    Google Scholar 

  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–W367.

    Article  CAS  Google Scholar 

  • Schrag, J. D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H. J., Schmid, R., Schomburg, D., Rydel, T. J., Oliver, J. D., Strickland, L. C., Dunaway, C. M., Larson, S. B., Day, J., & McPherson, A. (1997). The open conformation of a Pseudomonas lipase. Structure, 5(2), 187–202.

    Article  CAS  Google Scholar 

  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding analysis with PyMOL. Journal of Computer-Aided Molecular Design, 24, 417–422.

    Article  CAS  Google Scholar 

  • Sengupta, S., & Chattopadhyay, M. K. (1993). Lowry’s method of protein estimation: some more insights. Journal of Pharmacy and Pharmacology, 45, 80.

    Article  CAS  Google Scholar 

  • Shabtai, Y., & Daya-Mishne, N. (1992). Production, purification and pProperties of a lipase from a bacterium (Pseudomonas aeroginosa YS-7) capable of growing in water-restricted environments. Applied and Environmental Microbiology, 58, 174–180.

    CAS  Google Scholar 

  • Shah, A. A., Hasan, F., Akhter, J. I., Hameed, A., & Ahmed, S. (2008). Degradation of polyurethane by novel bacterial consortium isolated from soil. Annals of Microbiology, 55, 381–386.

    Article  Google Scholar 

  • Shimao, M. (2001). Biodegradation of plastics. Current Opinion in Biotechnology, 12, 242–247.

    Article  CAS  Google Scholar 

  • Stager, C. E., Erikson, E., & Davis, J. R. (1983). Rapid method for detection, identification and susceptibility testing of enteric pathogens. Journal of Clinical Microbiology, 17, 79–84.

    CAS  Google Scholar 

  • Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O. A., & Abola, E. E. (1998). Protein Data Bank (PDB): database of the three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D, 54, 1078–1084.

    Article  CAS  Google Scholar 

  • Szita, G., Tabajdi, V., Fábián, A., Biró, G., Reichart, O., & Körmöczy, P. S. (1998). A novel synthetic acetamide containing culture medium for isolating Pseudomonas aeruginosa from milk. International Journal of Food Microbiology, 43, 123–127.

    Article  CAS  Google Scholar 

  • Taylor, W. I., & Achanzar, D. (1972). Catalase test as an aid to the identification of Enterobacteriaceae. Applied Microbiology, 29, 58–61.

    Google Scholar 

  • The Times of India, August 16, 2007; www.timesofindia.indiatimes.com, Accessed on 5th May, 2014.

  • Titters, R. R., & Sancholzer, L. A. (1936). The use of semi-solid agar for the detection of bacterial motility. Journal of Bacteriology, 31, 575–580.

    Google Scholar 

  • Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742.

    Article  CAS  Google Scholar 

  • Tosin, M., Weber, M., Siotto, M., Lott, C., & Degli, I. F. (2012). Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Frontiers in Microbiology, 3, 225.

    Article  Google Scholar 

  • Tribedi, P., & Sil, A. K. (2013). Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. Journal Applied Microbioliogy. doi:10.1111/jam.12375.

    Google Scholar 

  • Tribedi, P., Sarkar, S., Mukherjee, K., & Sil, A. K. (2012). Isolation of a novel Pseudomonas sp. from soil that can efficiently degrade polyethylene succinate. Environmental Science and Pollution Research, 19(6), 2115–2124.

    Article  CAS  Google Scholar 

  • Tserki, V., Matzinose, P., Pavalidou, E., Vachliotic, D., & Panayiotou, C. (2006). Biodegradable alipetic polyester: part1properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polymer Degradation and Stability, 91, 367–376.

    Article  CAS  Google Scholar 

  • Uchida, H., Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Tokiwa, Y., & Nakahara, T. (2000). Properties of a bacterium which degrades solid poly (tetramethylene succinate)-co-adipate, a biodegradable plastic. FEMS Microbiology Letters, 189(1), 25–29.

    Article  CAS  Google Scholar 

  • Usha, R., Sangeetha, T., & Palaniswamy, M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2, 200–204.

    Google Scholar 

  • Wongwilaiwalin, S., Laothanachareon, T., Mhuantong, W., Tangphatsornruang, S., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2013). Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Appled Microbiology and Biotechnology, 97(20), 8941–8954.

    Article  CAS  Google Scholar 

  • Wu, J. H., Liu, W. T., Tseng, I. C., & Cheng, S. S. (2000). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology, 147, 373–382.

    Google Scholar 

  • Yoon, M. G., Jeon, H. J., & Kim, M. N. (2012). Biodegradation of polyethylene by a soil bacterium and alkB cloned recombinant cell. Journal of Bioremedediation and Biodegradation, 3, 145.

    CAS  Google Scholar 

  • Zheng, Y., Yanful, E. K., & Bassi, A. S. (2005). A review of plastic waste biodegradation. Critical Reviews in Biotechnology, 25, 243–250.

    Article  CAS  Google Scholar 

  • Zubris, K. A. V., & Richards, B. K. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138, 201–211.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors expressed their deep sense of gratitude to Karnataka State Council for Science and Technology (KSCST), Indian Institute of Science, Bangalore, for the financial support (Proj. Ref. No. 37S0835) and for their encouragements throughout the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file, Table 1

(DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skariyachan, S., Megha, M., Kini, M.N. et al. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ Monit Assess 187, 4174 (2015). https://doi.org/10.1007/s10661-014-4174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4174-y

Keywords

Navigation