Skip to main content
Log in

Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1-3), 227–38. doi:10.1007/s10661-007-9678-2.

    Article  CAS  Google Scholar 

  • Ali, M., & Taylor, A. (2010). The effect of salinity and temperature on the uptake of cadmium and zinc by the common blue mussel, Mytilus edulis with some notes on their survival. Mesopotamian Journal of Marine Science, 25(1), 11–30. http://scipeople.com/publication/115861/. Accessed 27 April 2016.

    Google Scholar 

  • Amiard, J. C., Amiard-Triquet, C., Barka, S., Pellerin, J., & Rainbow, P. S. (2006). Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology. doi:10.1016/j.aquatox.2005.08.015.

    Google Scholar 

  • Andral, B., Galgani, F., Tomasino, C., Bouchoucha, M., Blottiere, C., Scarpato, A., et al. (2011). Chemical contamination baseline in the Western basin of the Mediterranean sea based on transplanted mussels. Archives of Environmental Contamination and Toxicology, 61(2), 261–271. doi:10.1007/s00244-010-9599-x.

    Article  CAS  Google Scholar 

  • Bai, J. H., Cui, B. S., Chen, B., Zhang, K. J., Deng, W., Gao, H. F., & Xiao, R. (2011). Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecological Modelling, 222(2), 301–306. doi:10.1016/j.ecolmodel.2009.12.002.

    Article  CAS  Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell’Atti, A., Di Leo, A., & Maci, A. (2006). Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy). Marine Chemistry, 99(1-4), 227–235. doi:10.1016/j.marchem.2005.09.009.

    Article  CAS  Google Scholar 

  • Carral, E., Villares, R., Puente, X., & Carballeira, A. (1995). Influence of watershed lithology on heavy metal levels in estuarine sediments and organisms in Galicia (north-west Spain). Marine Pollution Bulletin, 30(9), 604–608. doi:10.1016/0025-326X(95)00017-H.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Raghunadh Babu, P. V., Acharyya, T., & Bandyopadhyay, D. (2010). Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: an investigation with pigment analysis by HPLC. Chemosphere, 80(5), 548–553. doi:10.1016/j.chemosphere.2010.04.039.

    Article  CAS  Google Scholar 

  • Choi, K. Y., Kim, S. H., Hong, G. H., & Chon, H. T. (2012). Distributions of heavy metals in the sediments of South Korean harbors. Environmental Geochemistry and Health, 34(SUPPL. 1), 71–82.

    Article  CAS  Google Scholar 

  • Christophoridis, C., Dedepsidis, D., & Fytianos, K. (2009). Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. Journal of Hazardous Materials, 168(2-3), 1082–1091. doi:10.1016/j.jhazmat.2009.02.154.

    Article  CAS  Google Scholar 

  • Devier, M.-H., Augagneur, S., Budzinski, H., Le Menach, K., Mora, P., Narbonne, J.-F., & Garrigues, P. (2005). One-year monitoring survey of organic compounds (PAHs, PCBs, TBT), heavy metals and biomarkers in blue mussels from the Arcachon Bay, France. Journal of Environmental Monitoring, 7(3), 224–240. doi:10.1039/b409577d.

    Article  CAS  Google Scholar 

  • Eades, L. J., Farmer, J. G., MacKenzie, A. B., Kirika, A., & Bailey-Watts, A. E. (2002). Stable lead isotopic characterisation of the historical record of environmental lead contamination in dated freshwater lake sediment cores from northern and central Scotland. Science of the Total Environment, 292(1-2), 55–67. doi:10.1016/S0048-9697(02)00026-8.

    Article  CAS  Google Scholar 

  • El-Said, G. F., Draz, S. E. O., El-Sadaawy, M. M., & Moneer, A. A. (2014). Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 49(9), 1029–44. doi:10.1080/10934529.2014.894853.

    Article  CAS  Google Scholar 

  • Feng, H., Han, X. F., Zhang, W. G., & Yu, L. Z. (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49(11-12), 910–915.

    Article  CAS  Google Scholar 

  • Fisher, N. S., Teyssié, J.-L., Fowler, S. W., & Wang, W.-X. (1996). Accumulation and retention of metals in mussels from food and water: a comparison under field and laboratory conditions. Environmental Science & Technology, 30(11), 3232–3242. doi:10.1021/es960009u.

    Article  CAS  Google Scholar 

  • Gao, X., & Chen, C. T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6), 1901–1911. doi:10.1016/j.watres.2012.01.007.

    Article  CAS  Google Scholar 

  • Greenfield, R., Brink, K., Degger, N., & Wepener, V. (2014). The usefulness of transplantation studies in monitoring of metals in the marine environment: South African experience. Marine Pollution Bulletin, 85(2), 566–73. doi:10.1016/j.marpolbul.2014.03.032.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. doi:10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Heimbürger, L.-E., Migon, C., & Cossa, D. (2011). Impact of atmospheric deposition of anthropogenic and natural trace metals on Northwestern Mediterranean surface waters: a box model assessment. Environmental Pollution (Barking, Essex : 1987), 159(6), 1629–1634. doi:10.1016/j.envpol.2011.02.046.

    Article  Google Scholar 

  • Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2006). Analysis of heavy metals in road-deposited sediments. Analytica Chimica Acta, 571(2), 270–278. doi:10.1016/j.aca.2006.04.064.

    Article  CAS  Google Scholar 

  • Hoarau, P., Gnassia-Barelli, M., Romeo, M., & Girard, J. P. (2001). Differential induction of glutathione S-transferases in the clam Ruditapes decussatus exposed to organic compounds. Environmental Toxicology and Chemistry, 20(3), 523–529.

    Article  CAS  Google Scholar 

  • Host, P. M. (1996). Drydock water pollution control efforts at Norfolk Naval Shipyard. Naval Engineers Journal, 108(2), 57–64. doi:10.1111/j.1559-3584.1996.tb00504.x.

    Article  Google Scholar 

  • Hunt, C. D., & Slone, E. (2010). Long-term monitoring using resident and caged mussels in Boston Harbor yield similar spatial and temporal trends in chemical contamination. Marine Environmental Research, 70(5), 343–357. doi:10.1016/j.marenvres.2010.07.002.

    Article  CAS  Google Scholar 

  • Jackim, E., Morrison, G., & Steele, R. (1977). Effects of environmental factors on radiocadmium uptake by four species of marine bivalves. Marine Biology, 40(4), 303–308. doi:10.1007/BF00395722.

    Article  CAS  Google Scholar 

  • Kasprzak, K. S. (2002). Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radical Biology and Medicine, 32(10), 958–967. doi:10.1016/S0891-5849(02)00809-2.

    Article  CAS  Google Scholar 

  • Klaassen, C. D., Liu, J., & Choudhuri, S. (1999). Metallothionein: an intracellular protein to protect against cadmium toxicity. Annual Review of Pharmacology and Toxicology, 39, 267–294. doi:10.1146/annurev.pharmtox.39.1.267.

    Article  CAS  Google Scholar 

  • Kumar, V., Sinha, A. K., Rodrigues, P. P., Mubiana, V. K., Blust, R., & De Boeck, G. (2015). Linking environmental heavy metal concentrations and salinity gradients with metal accumulation and their effects: a case study in 3 mussel species of Vitória estuary and Espírito Santo bay, Southeast Brazil. The Science of the Total Environment, 523, 1–15. doi:10.1016/j.scitotenv.2015.03.139.

    Article  CAS  Google Scholar 

  • Liu, J., Goyer, R. A., & Clarkson, T. W. (2008). Toxic effects of metals. In C. D. Klaassen (Ed.), Casarett and Doull’s toxicology: the basic science of poisons) (7th ed., pp. 931–979). New York: McGraw-Hill.

    Google Scholar 

  • Lobel, P. B., Bajdik, C. D., Belkhode, S. P., Jackson, S. E., & Longerich, H. P. (1991). Improved protocol for collecting mussel watch specimens taking into account sex, size, condition, shell shape, and chronological age. Archives of Environmental Contamination and Toxicology, 21(3), 409–414. doi:10.1007/BF01060364.

    Article  Google Scholar 

  • Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment: An International Journal, 4(5), 1019–1039. doi:10.1080/10807039891284956.

    Article  Google Scholar 

  • Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G., & de Sostoa, A. (2013). Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Science of the Total Environment, 449, 9–19. doi:10.1016/j.scitotenv.2013.01.012.

    Article  CAS  Google Scholar 

  • Müller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: a stocktaking. Chemiker-Zeitung, 105, 157–164.

    Google Scholar 

  • Okay, O. S., Karacık, B., Güngördü, A., Ozmen, M., Yılmaz, A., Koyunbaba, N. C., et al. (2014). Micro-organic pollutants and biological response of mussels in marinas and ship building/breaking yards in Turkey. Science of the Total Environment, 496, 165–78. doi:10.1016/j.scitotenv.2014.07.035.

    Article  CAS  Google Scholar 

  • Phillips, D. J. H. (1976). The common mussel Mytilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Marine Biology, 38(1), 59–69. doi:10.1007/BF00391486.

    CAS  Google Scholar 

  • Przytarska, J. E., Sokołowski, A., Wołowicz, M., Hummel, H., & Jansen, J. (2010). Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as biomonitors. Environmental Monitoring and Assessment, 166(1-4), 461–476. doi:10.1007/s10661-009-1015-5.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120(3), 497–507. doi:10.1016/S0269-7491(02)00238-5.

    Article  CAS  Google Scholar 

  • Riget, F., Johansen, P., & Asmund, G. (1996). Influence of length on element concentrations in blue mussels (Mytilus edulis). Marine Pollution Bulletin, 32(10), 745–751. doi:10.1016/0025-326X(96)00067-7.

    Article  CAS  Google Scholar 

  • Rivetti, C., Campos, B., Faria, M., De Castro Català, N., Malik, A., Muñoz, I., et al. (2014). Transcriptomic, biochemical and individual markers in transplanted Daphnia magna to characterize impacts in the field. Science of the Total Environment, 503, 200–212. doi:10.1016/j.scitotenv.2014.06.057.

    Google Scholar 

  • Rogers, J., & Kavlock, R. J. (2008). Developmental toxicology. In C. D. Klaassen (Ed.), Casarett and Doull’s toxicology: the basic science of poisons (7th ed., pp. 415–451). New York: McGraw-Hill. doi:10.1036/0071470514.

    Google Scholar 

  • Roméo, M., Hoarau, P., Garello, G., Gnassia-Barelli, M., & Girard, J. P. (2003). Mussel transplantation and biomarkers as useful tools for assessing water quality in the NW Mediterranean. Environmental Pollution, 122(3), 369–378. doi:10.1016/S0269-7491(02)00303-2.

    Article  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7), 795–805. doi:10.1007/s00254-002-0694-9.

    CAS  Google Scholar 

  • Tang, W., Shan, B., Zhang, H., & Mao, Z. (2010). Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. Journal of Hazardous Materials, 176(1-3), 945–951. doi:10.1016/j.jhazmat.2009.11.131.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285. doi:10.1016/0016-7037(64)90129-2.

    Article  CAS  Google Scholar 

  • Ternon, E., Guieu, C., Loye-Pilot, M.-D., Leblond, N., Bosc, E., Gasser, B., & Miquel, J.-C. (2010). The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosciences Discussions, 6(6), 809–826.

    Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1-4), 566–575. doi:10.1007/BF02414780.

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of the Geological Society of America, 72(2), 175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Turner, A. (2010). Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 60(2), 159–171. doi:10.1016/j.marpolbul.2009.12.004.

    Article  CAS  Google Scholar 

  • Viarengo, A., Ponzano, E., Dondero, F., & Fabbri, R. (1997). A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environmental Research, 44(1), 69–84. doi:10.1016/S0141-1136(96)00103-1.

    Article  CAS  Google Scholar 

  • Wang, W. X., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. Science of The Total Environment, 237–238, 459–472. doi:10.1016/S0048-9697(99)00158-8.

    Article  Google Scholar 

  • Wang, L., Wang, Y., Xu, C., An, Z., & Wang, S. (2011). Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environmental Monitoring and Assessment, 173(1-4), 301–313. doi:10.1007/s10661-010-1388-5.

    Article  CAS  Google Scholar 

  • Xu, L., Wang, T., Ni, K., Liu, S., Wang, P., Xie, S., et al. (2014). Ecological risk assessment of arsenic and metals in surface sediments from estuarine and coastal areas of the Southern Bohai Sea, China. Human and Ecological Risk Assessment: An International Journal, 20(2), 388–401. doi:10.1080/10807039.2012.762281.

    Article  CAS  Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution (Barking, Essex : 1987), 159(10), 2575–85. doi:10.1016/j.envpol.2011.06.011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported via joint research projects between the Scientific and Technological Research Council of Turkey (TÜBİTAK) and the International Bureau of the Federal Ministry of Education and Research, Germany (Project Nos: 110Y194 in Turkey and PT-DLR 01DL12016 in Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oya S. Okay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okay, O.S., Ozmen, M., Güngördü, A. et al. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels. Environ Monit Assess 188, 352 (2016). https://doi.org/10.1007/s10661-016-5346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5346-8

Keywords

Navigation