Skip to main content
Log in

Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The NPGS-USDA core collection with 85 accessions of red clover, an important forage species, is little described. The goal of the present study was to evaluate the diversity of a set of accessions from the core collection at the morphological and molecular level in order to extract some valuable accessions for Brazilian red clover breeding programs. Twenty-one morphological traits, collected in field and greenhouse in South Brazil, and seven SSR markers were used to describe 57 accessions from the U.S. core collection and one population cultivated in Southern Brazil. Variation between accessions was large for most of the 21 morphological traits. A cluster analysis based on the morphological traits revealed five distinct clusters that separated the populations according to flowering earliness, as already described, but also according to persistency, growth habit and dry matter productivity. Over seven SSR loci, the number of alleles averaged 11.1 alleles per locus. Genetic diversity measured with SSR markers was high, with a mean expected heterozygosity of 0.86. An analysis of molecular variance revealed that the largest proportion of variation (83.6%) resided at the within population level. Although the molecular markers also separated accessions into five clusters, there was no coincidence between the composition of groups found with morphological and molecular data. Use of genetic diversity in breeding programs requires to use the most promising populations, to combine positive traits such as persistency and forage yield, and probably to use within population variation to detect valuable genotypes that could be used as parents of synthetic varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baccini A, Besse P (2004) Data mining. 1. Exploration statistique. Publication du Laboratoire de Statistique et Probabilités. Université Paul Sabatier, Toulouse III

    Google Scholar 

  • Belkhir K (2004) GENETIX (version 4.03) logiciel sous Windows TM pour la génétique de populations. Montpellier/France

  • Bird JN (1948) Early and late types of red clover. Sci Agric 28:444–453

    Google Scholar 

  • Bolaños-Aguilar ED, Huyghe C, Ecalle C et al (2002) Effect of cultivar and environment on seed yield in alfalfa. Crop Sci 42:45–50

    Article  PubMed  Google Scholar 

  • Bortnem R, Boe A (2002) Frequency of the no mark leaflet allele in red clover. Crop Sci 42:634–636

    Article  Google Scholar 

  • Bortnem R, Boe A (2003) Color index for red clover seed. Crop Sci 43:2279–2283

    Article  Google Scholar 

  • Bowley SR, Taylor NL, Dougherty T (1984) Physiology and morphology of red clover. Adv Agrono 37:317–347

    Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Bulinska-Radomska Z (2000) Morphological relationships among 15 species of Trifolium occurring in Poland. Genet Resour Crop Evol 47:267–272

    Article  Google Scholar 

  • Campos-de-Quiroz H, Ortega-Klose F (2001) Genetic variability among elite red clover (Trifolium pratense L.) parents used in Chile as revealed by RAPD markers. Euphytica 122:61–67

    Article  CAS  Google Scholar 

  • Cheung WY, Hubert N, Landry BS (1993) A simple and rapid DNA microextraction method for plant, animal, and insect suitable for RAPD and other PCR analyses. PCR Meth Appl 3:69–70

    CAS  Google Scholar 

  • Choo TM (1984) Association between growth habit and persistence in red clover. Euphytica 33:177–185

    Article  Google Scholar 

  • Christie BR, Choo TM (1991) Morphological characteristics associated with winter survival of five growth types of tetraploid red clover. Euphytica 54:275–278

    Google Scholar 

  • Crochemore ML, Huyghe C, Ecalle C et al (1998) Structuration of alfalfa genetic diversity using agronomic and morphological characters. Relationship with RAPD markers. Agronomie 18:79–84

    Article  Google Scholar 

  • Crusius AF, Paim NR, Dall’Agnol M et al (1999) Variability evaluation of the agronomic characters in a red clover population. Pesqui Agropecu Gau 5:293–301

    Google Scholar 

  • Excoffier LG, Schneider S (2005) Arlequin version 3.0: An integrated software package for population data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Fan J, Zhong H, Harris W (2004) Effects of cutting at different reproductive development stages on aftermath growth of red clover (Trifolium pratense) in a subtropical mountain environment. N Z J Agr Res 47:209–217

    Google Scholar 

  • Flajoulot S, Ronfort J, Baudouin P et al (2005) Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor Appl Genet 111:1420–1429

    Article  PubMed  CAS  Google Scholar 

  • Greene SL, Gritsenko M, Vandemark G (2004) Relating morphologic and RAPD marker variation to collection site environment in wild populations of red clover (Trifolium pratense L.). Genet Resour Crop Evol 51:643–653

    Article  CAS  Google Scholar 

  • Hagen MJ, Hamrick JL (1998) Genetic variation and population genetic structure in Trifolium pratense. J Hered 89:178–181

    Article  PubMed  CAS  Google Scholar 

  • Herrmann D, Boller B, Widmer F et al (2005) Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome 48:474–486

    Article  PubMed  CAS  Google Scholar 

  • Herrmann D, Boller B, Studer B et al (2006) QTL analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet 112:536–545

    Article  PubMed  CAS  Google Scholar 

  • IBPGR (1984) Descriptor list for forage legumes. In: Andersen S, Ellis DW (eds) Forage legumes descriptors. IBPGR, Rome

    Google Scholar 

  • Johns MA, Skroch PW, Nienhuis J et al (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37:605–613

    Article  Google Scholar 

  • Joshi J, Schmid B, Caldeira MC et al (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  • Julier B, Huyghe C, Ecalle C (2000) Within and among cultivar genetic variation in alfalfa: forage quality, morphology, and yield. Crop Sci 40:365–369

    Article  Google Scholar 

  • Kongkiatngam P, Waterway MJ, Fortin MG et al (1995) Genetic-variation within and between 2 cultivars of red-clover (Trifolium-pratense L.)—Comparisons of morphological, isozyme and RAPD markers. Euphytica 84:237–246

    Article  CAS  Google Scholar 

  • Kongkiatngam P, Waterway MJ, Coulman BE et al (1996) Genetic variation among cultivars of red clover (Trifolium pratense L.) detected by RAPD markers amplified from bulk genomic DNA. Euphytica 89:355–361

    CAS  Google Scholar 

  • Kouamé CN, Quesenberry KH (1993) Cluster analysis of a world collection of red clover germplasm. Genet Resour Crop Evol 40:39–47

    Article  Google Scholar 

  • Kölliker R, Jones ES, Drayton MC et al (2001) Development and characterization of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theor Appl Genet 102:416–424

    Article  Google Scholar 

  • Kölliker R, Herrmann D, Boller B et al (2003) Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theor Appl Genet 107:306–315

    Article  PubMed  CAS  Google Scholar 

  • Kölliker R, Enkerli J, Widmer F (2006) Characterization of novel microsatellite loci for red clover (Trifolium pratense L.) from enriched genomic libraries. Mol Ecol Notes 6:50–53

    Article  CAS  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Maitre JP, Assemat L, Jacquard P (1985) Growth of red clover (Trifolium pratense L.) in association with Italian ryegrass (Lolium multiflorum Lam. subsp. italicum). I. Morphological organization of the clover plant. Agronomie 5:251–259

    Article  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mela T (2003) Red clover grown in a mixture with grasses: yield, persistence and dynamics of quality characteristics. Agr Food Sci Finland 12:195–212

    Google Scholar 

  • Mengoni A, Gori A, Bazzicalupo M (2000) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breeding 119:311–317

    Article  CAS  Google Scholar 

  • Mirzaie-Nodoushan H, Gordon IL, Rumball WB (1999) Inheritance of growth habit-related attributes in red clover (Trifolium pratense L.). J Hered 90:550–553

    Article  Google Scholar 

  • Montardo DP, Dall’Agnol M, Crusius AF et al (2003a) Path analysis for seed production in red clover (Trifolium pratense L.). Braz J An Sci 32:1076–1082

    Google Scholar 

  • Montardo DP, Dall’Agnol M, Paim NR (2003b) Forage yield and persistence of red clover progenies in two environments. Sci Agricol 60:447–452

    Google Scholar 

  • Mosjidis JA, Klingler KA (2006) Genetic diversity in the core subset of the US red clover germplasm. Crop Sci 46:758–762

    Article  Google Scholar 

  • Muller MH, Prosperi JM, Santoni S et al (2003) Inferences from mitochondrial DNA patterns on the domestication history of alfalfa (Medicago sativa). Mol Ecol 12:2187–2199

    Article  PubMed  CAS  Google Scholar 

  • Ortega K, Galdames G, Aguilera P et al (2003) Redqueli-INIA, new red clover synthetic cultivar. Agr Tec 63:207–211

    Google Scholar 

  • Pritchard JK, Donnelly P (2003) Documentation for STRUCTURE software: Version 2. Available at http://www.pritch.bsd.uchicago.edu

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): A population genetics software for exacts test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rohlf FJ (2000) Numerical taxonomy and multivariate analysis system. [2.1] New York, Exeter Software

  • Rosso BS, Pagano EM (2005) Evaluation of introduced and naturalized populations of red clover (Trifolium pratense L.) at Pergamino EEA-INTA, Argentina. Genet Resour Crop Evol 52: 507–511

    Article  Google Scholar 

  • SAS Institute (2001) SAS: STAT user’s guide: Statistics. NC State Univ. Press. Cary, NC. [8.02]. Cary, NC, SAS Institute

  • Sato S, Isobe S, Asamizu E et al (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12:301–364

    Article  PubMed  CAS  Google Scholar 

  • Smith RS, Bishop DJ (1993) Astred—a stoloniferous red clover. In: Abstracts of the 17th International Grassland Congress, pp. 421–423. Palmerston North (New Zealand) and Rockhampton (Australia). 8–21 February, 1993

  • Steiner JJ, los Santos GG (2001) Adaptive ecology of Lotus corniculatus L. genotypes: I. Plant morphology and RAPD maker characterizations. Crop Sci 41:552–563

    Article  Google Scholar 

  • Taylor NL, Quesenberry KH (eds) (1996). Red clover science. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  • Taylor NL, Smith RR (1979) Red clover breeding and genetics. Adv Agron 37:125–155

    Google Scholar 

  • Taylor NL, Smith RR (1995) Red clover. In: Barnes RF, Miler DA, Nelson CJ (eds) Forages. Iowa State University, pp 217–226

  • Thompson JA, Nelson RL (1998) Core set of primers to evaluate genetic diversity in soybean. Crop Sci 38:1356–1362

    Article  CAS  Google Scholar 

  • Thuillet AC, Bataillon T, Poirier S et al (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Tixier MH, Soundille RM, Loroy P et al (1997) Detection of wheat microsatellites using a non radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    CAS  Google Scholar 

  • Ulloa O, Ortega F, Campos H (2003) Analysis of genetic diversity in red clover (Trifolium pratense L.) breeding populations as revealed by RAPD genetic markers. Genome 46:529–535

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yu J, Mosjidis JA, Klingler KA et al (2001) Isozyme diversity in North American cultivated red clover. Crop Sci 41:1625–1628

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Dall’Agnol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, P.M.B., Julier, B., Sampoux, JP. et al. Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica 160, 189–205 (2008). https://doi.org/10.1007/s10681-007-9534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9534-z

Keywords

Navigation