Skip to main content
Log in

Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

There are now thousands of estimates of phenotypic selection in natural populations, resulting in multiple synthetic reviews of these data. Here we consider several major lessons and limitations emerging from these syntheses, and how they may guide future studies of selection in the wild. First, we review past analyses of the patterns of directional selection. We present new meta-analyses that confirm differences in the direction and magnitude of selection for different types of traits and fitness components. Second, we describe patterns of temporal and spatial variation in directional selection, and their implications for cumulative selection and directional evolution. Meta-analyses suggest that sampling error contributes importantly to observed temporal variation in selection, and indicate that evidence for frequent temporal changes in the direction of selection in natural populations is limited. Third, we review the apparent lack of evidence for widespread stabilizing selection, and discuss biological and methodological explanations for this pattern. Finally, we describe how sampling error, statistical biases, choice of traits, fitness measures and selection metrics, environmental covariance and other factors may limit the inferences we can draw from analyses of selection coefficients. Current standardized selection metrics based on simple parametric statistical models may be inadequate for understanding patterns of non-linear selection and complex fitness surfaces. We highlight three promising areas for expanding our understanding of selection in the wild: (1) field studies of stabilizing selection, selection on physiological and behavioral traits, and the ecological causes of selection; (2) new statistical models and methods that connect phenotypic variation to population demography and selection; and (3) availability of the underlying individual-level data sets from past and future selection studies, which will allow comprehensive modeling of selection and fitness variation within and across systems, rather than meta-analyses of standardized selection metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold SJ, Wade MJ (1984) On the measurement of natural and sexual selection: applications. Evolution 38(4):720–734

    Article  Google Scholar 

  • Bell G (2010) Fluctuating selection: the perpetual renewal of adaptation in variable environments. Phil Trans R Soc B 365:87–97

    Article  PubMed  Google Scholar 

  • Blows MW (2007) A tale of two matrices: multivariate approaches in evolutionary biology. J Evol Biol 20:1–8

    Article  PubMed  CAS  Google Scholar 

  • Blows MW, Brooks R (2003) Measuring nonlinear selection. Am Nat 162:815–820

    Article  PubMed  Google Scholar 

  • Bumpus HC (1899) The elimination of the unfit as illustrated by the introduced sparrow, Passer domesicus. Biol Lectures Marine Biol Lab, Woods Hole, MA, pp 209–226

  • Calsbeek B (2012) Exploring variation in fitness surfaces over time or space. Evolution. doi:10.1111/j.1558-5646.2011.01503.x

  • Calsbeek R, Cox RM (2010) Experimentally assessing the relative importance of predation and competition as agents of selection. Nature 465:613–616

    Article  PubMed  CAS  Google Scholar 

  • Carlson SM, Quinn TP (2007) Ten years of varying lake level and selection on size-at-maturity in sockeye salmon. Ecology 88(10):2620–2629

    Article  PubMed  Google Scholar 

  • Cornwallis CK, Uller T (2010) Towards an evolutionary ecology of sexual traits. Trends Ecol Evol 253:145–152

    Article  Google Scholar 

  • Crone EE (2001) Is survivorship a better fitness surrogate than fecundity? Evolution 55:2611–2614

    PubMed  CAS  Google Scholar 

  • Crow JF (1958) Some possibilities for measuring selection intensities in man. Hum Biol 30:1–13

    PubMed  CAS  Google Scholar 

  • Darwin CD (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. John Murray, London

    Google Scholar 

  • Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463

    Article  PubMed  CAS  Google Scholar 

  • Egan SP, Hood GR, Ott JR (2011) Natural selection on gall size: variable contributions of individual host plants to population-wide patterns. Evolution 65:3543–3557

    Article  PubMed  Google Scholar 

  • Ellner SP, Hairston NG Jr (1994) Role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am Nat 143:403–417

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Estes S, Arnold SJ (2007) Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat 169:227–244

    Article  PubMed  Google Scholar 

  • Fairbairn DJ, Preziosi RF (1996) Sexual selection and the evolution of sexual size dimorphism in the water strider, Aquarius remigis. Evolution 50(4):1549–1559

    Article  Google Scholar 

  • Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–207

    Article  Google Scholar 

  • Grant BR, Grant PR (1989) Natural selection in a population of Darwins finches. Am Nat 133(3):377–393

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296(5568):707–711

    Article  PubMed  CAS  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Hadfield J (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Google Scholar 

  • Hadfield J, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

    Article  PubMed  CAS  Google Scholar 

  • Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557

    Article  PubMed  CAS  Google Scholar 

  • Hadfield JD, Wilson AJ, Garant D, Sheldon BC, Kruuk LEB (2010) The misuse of BLUP in ecology and evolution. Am Nat 175:116–125

    Article  PubMed  Google Scholar 

  • Harrison F (2011) Getting started with meta-analysis. Methods Ecol Evol 2:1–10

    Article  Google Scholar 

  • Hedrick PW (1973) Genetic variation and the generalized frequency-dependent selection model. Am Nat 107:800–802

    Article  Google Scholar 

  • Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53(6):1637–1653

    Article  Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588

    Article  PubMed  Google Scholar 

  • Hereford J, Hansen TF, Houle D (2004) Comparing strengths of directional selection: How strong is strong? Evolution 58(10):2133–2143

    PubMed  Google Scholar 

  • Hersch EI, Phillips PC (2004) Power and potential bias in field studies of natural selection. Evolution 58(3):479–485

    PubMed  Google Scholar 

  • Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hoang A, Hill CE, Beerli P, Kingsolver JG (2001) Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 98(16):9157–9160

    Article  PubMed  CAS  Google Scholar 

  • Horvitz CC, Coulson T, Tuljapurkar S, Schemske DW (2010) A new way to integrate selection when both demography and selection gradients vary over time. Int J Plant Sci 171(9):945–959

    Article  Google Scholar 

  • Hunt J, Breuker CJ, Sadowski JA, Moore AJ (2009) Male-male competition, female mate choice and their interaction: determining total sexual selection. J Evol Biol 22:13–26

    Article  PubMed  Google Scholar 

  • Husby A, Visser ME, Kruuk LEB (2011) Speeding up microevolution: the effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol 9:e1000585

    Article  PubMed  CAS  Google Scholar 

  • Kingsolver JG (2009) The well-temperatured biologist. Am Nat 174:755–768

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Diamond SE (2011) Phenotypic selection in natural populations: what limits directional selection? Am Nat 177:346–357

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:1608–1612

    PubMed  Google Scholar 

  • Kingsolver JG, Pfennig DW (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572

    Article  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157(3):245–261

    Article  PubMed  CAS  Google Scholar 

  • Kokko H, López-Sepulcre A (2007) The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecol Lett 10:773–782

    Article  PubMed  Google Scholar 

  • Kruuk LEB, Merilä J, Sheldon BC (2003) When environmental covariance short-circuits natural selection. Trends Ecol Evol 18:207–208

    Article  Google Scholar 

  • Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst 39:525–548

    Article  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33:402–416

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37(6):1210–1226

    Article  Google Scholar 

  • MacColl AD (2011) The ecological causes of evolution. Trends Ecol Evol 26:514–522

    Article  PubMed  Google Scholar 

  • Mauricio R, Mojonnier LE (1997) Reducing bias in the measurement of selection. Trends Ecol Evol 12:433–436

    Article  PubMed  CAS  Google Scholar 

  • McGlothlin JW (2010) Combining selective episodes to estimate lifetime nonlinear selection. Evolution 64:1377–1384

    Article  PubMed  Google Scholar 

  • McPeek M (2010) Evolutionary biology: the next 150 years. In: Bell MA, Futuyma DA, Eanes WF, Levinton JS (eds) Evolution since Darwin: the first 150 years. Sinauer Press, Sunderland

    Google Scholar 

  • Merilä J, Kruuk LE, Sheldon BC (2001) Explaining stasis: microevolutionary studies of natural populations. Genetica 112(113):199–222

    Article  PubMed  Google Scholar 

  • Mitchell-Olds T, Shaw RG (1987) Regression analysis of natural selection: statistical inference and biological interpretation. Evolution 41(6):1149–1161

    Article  Google Scholar 

  • Morrissey MB, Hadfield JD (2012) Directional selection in temporally replicated studies is remarkably consistent. Evolution 66:435–442

    Google Scholar 

  • Morrissey MB, Kruuk LEB, Wilson AJ (2010) The danger of applying the breeder’s equation in observational studies of natural populations. J Evol Biol 23:2277–2288

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR (1999) Detecting publication bias in metaanalyses: a case study of fluctuating asymmetry and sexual selection. Am Nat 154:220–233

    Article  Google Scholar 

  • Phillips PC, Arnold SJ (1989) Visualizing multivariate selection. Evolution 43:1209–1222

    Article  Google Scholar 

  • Poulin R (2000) Manipulation of host behaviour by parasites: a weakening paradigm? Proc R Soc B 267:787–792

    Article  PubMed  CAS  Google Scholar 

  • Price TD, Grant PR (1984) Life history traits and natural selection for small body size in a population of Darwin’s finches. Evolution 38(3):483–494

    Article  Google Scholar 

  • Price TD, Kirkpatrick M, Arnold SJ (1988) Directional selection and the evolution of breeding date in birds. Science 240:798–799

    Article  PubMed  CAS  Google Scholar 

  • Punzalan D, Rodd FH, Rowe L (2010) Temporal variation in patterns of multivariate sexual selection in a wild insect population. Am Nat 175:401–414

    Article  PubMed  Google Scholar 

  • Rausher MD (1992) The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46:616–626

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112(113):183–198

    Article  PubMed  Google Scholar 

  • Rosenberg MS (2005) The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59:464–468

    PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. URL <http://www.R-project.org/>

  • Saccheri I, Hanski I (2006) Natural selection and population dynamics. Trends Ecol Evol 21(6):341–347

    Article  PubMed  Google Scholar 

  • Sasaki A, Ellner SP (1997) Quantitative genetic variance maintained by fluctuating selection with overlapping generations: variance components and covariances. Evolution 51:682–696

    Article  Google Scholar 

  • Scheiner SM, Donohue K, Dorn LA, Mazer SJ, Wolfe LM (2002) Reducing environmental bias when measuring natural selection. Evolution 56:2156–2167

    PubMed  Google Scholar 

  • Schluter D (1988) Estimating the form of natural selection on a quantitative trait. Evolution 42(5):849–861

    Article  Google Scholar 

  • Schluter D, Nychka D (1994) Exploring fitness surfaces. Am Nat 143(4):597–616

    Article  Google Scholar 

  • Schluter D, Price TD, Rowe L (1991) Conflicting selection pressures and life-history trade-offs. Proc R Soc B 246(1315):11–17

    Article  Google Scholar 

  • Shaw RG, Geyer CJ (2010) Inferring fitness landscapes. Evolution 64:2510–2520

    Article  PubMed  Google Scholar 

  • Shaw RG, Geyer CJ, Wagenius S, Hangelbroek HH, Etterson JR (2008) Unifying life-history analyses for inference of fitness and population growth. Am Nat 172:E35–E47

    Article  PubMed  Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    Article  PubMed  Google Scholar 

  • Siepielski AM, DiBattista JD, Evans JA, Carlson SM (2011) Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc R Soc B 278:1572–1580

    Article  PubMed  Google Scholar 

  • Simmons LW, Tomkins JL, Kotiaho JS, Hunt J (1999) Fluctuating paradigm. Proc R Soc B 266:593–595

    Article  Google Scholar 

  • Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe JR, Rutter MT, Burdick DS, Tiffin P, Rausher MD, Mauricio R (2002) Testing for environmentally induced bias in phenotypic estimates of natural selection: theory and practice. Am Nat 160:511–523

    Article  PubMed  Google Scholar 

  • Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW (2008) Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing? Evolution 62(9):2435–2440

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson DJ, Hasall C, Low CD, Watts PC (2011) Field estimates of reproductive success in a model insect: behavioral surrogates are a poor predictors of fitness. Ecol Lett 14:905–913

    Article  PubMed  Google Scholar 

  • Urban MC (2011) The evolution of species interactions across natural landscapes. Ecol Lett 14:723–732

    Article  PubMed  Google Scholar 

  • van Tienderen PH (2000) Elasticities and the link between demographic and evolutionary dynamics. Ecology 81(3):666–679

    Article  Google Scholar 

  • Wade MJ, Kalisz S (1990) The causes of natural selection. Evolution 44:1947–1955

    Article  Google Scholar 

  • Weis AE, Abrahamson WG (1986) Evolution of a host plant manipulation by gall makers: ecological and genetic factors in the Solidago-Eurosta system. Am Nat 127:681–695

    Article  Google Scholar 

  • Weldon WFR (1901) A first study of natural selection in Clausilia laminata (Montagu). Biometrika 1:109–124

    Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkgington JG, Coltman DW, Misfud DV, Clutton-Brock TH, Kruuk LEB (2006) Environmental coupling of selection and heritability limits evolution. PLoS Biol 7:e216

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrew Hendry, Ryan Martin, Michael Morrissey and two anonymous reviewers for useful suggestions on earlier versions of the manuscript. We thank Jarrod Hadfield for identifying problems and suggesting solutions to an earlier version of the meta-analyses. The Whiteley Center provided an ideal venue for analysis and the initial writing for JGK. Research supported in part by NSF grant IOS-1120500 to JGK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel G. Kingsolver.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingsolver, J.G., Diamond, S.E., Siepielski, A.M. et al. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol Ecol 26, 1101–1118 (2012). https://doi.org/10.1007/s10682-012-9563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9563-5

Keywords

Navigation