Skip to main content
Log in

Analysis of genes associated with retrotransposons in the rice genome

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Retrotransposons comprise a significant fraction of the rice genome. Despite their prevalence, the effects of retrotransposon insertions are not well understood, especially with regard to how they affect the expression of genes. In this study, we identified one-sixth of rice genes as being associated with retrotransposons, with insertions either in the gene itself or within its putative promoter region. Among genes with insertions in the promoter region, the likelihood of the gene being expressed was shown to be directly proportional to the distance of the retrotransposon from the translation start site. In addition, retrotransposon insertions in the transcribed region of the gene were found to be positively correlated with the presence of alternative splicing forms. Furthermore, preferential association of retrotransposon insertions with genes in several functional classes was identified. Some of the retrotransposons that are part of full-length cDNA (fl-cDNA) contribute splice sites and give rise to novel exons. Several interesting trends concerning the effects of retrotransposon insertions on gene expression were identified. Taken together, our data suggests that retrotransposon association with genes have a role in gene regulation. The data presented in this study provides a foundation for experimental studies to determine the role of retrotransposons in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1998) Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 7:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Brookfield JFY, Johnson LJ (2006) The evolution of mobile DNAs: When will transposons create phylogenies that look as if there is a master gene? Genetics 173:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106

    Article  PubMed  CAS  Google Scholar 

  • Davis MB, Dietz J, Standiford DM, Emerson CP (1998) Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants. Genetics 150:1105–1114

    PubMed  CAS  Google Scholar 

  • DeBarry JD, Ganko EW, McCarthy EM, McDonald JF (2006) The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Mol Biol Evol 23:479–481

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G, Cervone F, Bellincampi D, Tsernoglou D (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  CAS  Google Scholar 

  • Elrouby N, Bureau TE (2001) A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 276:41963–41968

    Article  PubMed  CAS  Google Scholar 

  • Franchini LF, Ganko EW, McDonald JF (2004) Retrotransposon-gene associations are widespread among D. melanogaster populations. Mol Biol Evol 21:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Ganko EW, Bhattacharjee V, Schliekelman P, McDonald JF (2003) Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol Biol Evol 20:1925–1931

    Article  PubMed  CAS  Google Scholar 

  • Ganko EW, Greene CS, Lewis JA, Bhattacharjee V, McDonald JF (2006) LTR retrotransposon-gene associations in Drosophila melanogaster. J Mol Evol 62:111–120

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004a) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Zhirong B, Zhang X, Eddy SR, Wessler SR (2004b) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Deng XW (2007) A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol 8: R28

    Article  PubMed  CAS  Google Scholar 

  • Jin YK, Bennetzen JL (1994) Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK (2006) Evolutionary tinkering with transposable elements. Proc Natl Acad Sci USA 103:7941–7942

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (2000) Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet 9:418–420

    Article  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Phys Plant Mol Biol 47:627–654

    Article  CAS  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) LARD retroelements: novel, non-autonomous components of barley and related genomes. Genetics 166:1437–1450

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH (2004) Mobile elements. Drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S et al (2003) Collection, mapping, and annotation of 28,000 full-length cDNA clones from Japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kobayashi S, Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11:707–726

    Article  PubMed  CAS  Google Scholar 

  • Leprince AS, Grandbastien MA, Meyer C (2001) Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol Biol 47:533–541

    Article  CAS  Google Scholar 

  • Lynch M, Scofield DG, Hong X (2005) The evolution of transcription-initiation sites. Mol Biol Evol 22:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9:967–978

    Article  PubMed  CAS  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Dunn CA, Landry J-R, Svenback D, Mager DL (2005) Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 110:342–352

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K, Tej S, Skogen JW, Meyers BC (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  PubMed  CAS  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang G, Meyers BC (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  PubMed  CAS  Google Scholar 

  • Prak ETL, Kazazian H (2000) Mobile elements and the human genome. Nat Rev Genet 1:134–144

    Article  PubMed  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.) J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Diaz C, Schilperoort RA, Hensgens LAM (1993) Cell-type specific expression of three rice genes GOS2, GOS5 and GOS9. Plant Mol Biol 23:889–894

    Article  PubMed  CAS  Google Scholar 

  • Schlenke TA, Begun DJ (2004) Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc Natl Acad Sci USA 101:1626–1631

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Ast G, Graur D (2002) Alu-containing exons are alternatively spliced. Genome Res 12:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G (2004) Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell 14:221–231

    Article  PubMed  CAS  Google Scholar 

  • Van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Purugganan M, Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Marsolais F, Richard M, Rouleau M (1997) Biochemistry and molecular biology of plant sulfotransferases. FASEB J 11:517–525

    PubMed  CAS  Google Scholar 

  • Verica JA, He Z-H (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129:455–459

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GK, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    Article  PubMed  CAS  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  PubMed  Google Scholar 

  • Wessler SR (2001) Plant transposable elements. A hard act to follow. Plant Physiol 125:149–151

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet doi: 10.1038/nrg2165

  • Witte C-P, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    Article  PubMed  CAS  Google Scholar 

  • Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR (2005) The Institute for Genomic Research Osa1 rice genome annotation database. Plant Physiol 138:18–26

    Article  PubMed  CAS  Google Scholar 

  • Zheng CL, Fu XD, Gribskov M (2005) Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. RNA 11:1777–1787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Aparna Deshpande for her critical review of the manuscript and help in the development of the final version. Preliminary analysis done by Matthew McCormick and Zijun Xu is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wusirika Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krom, N., Recla, J. & Ramakrishna, W. Analysis of genes associated with retrotransposons in the rice genome. Genetica 134, 297–310 (2008). https://doi.org/10.1007/s10709-007-9237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9237-3

Keywords

Navigation