Skip to main content
Log in

Patterns of quantitative genetic variation in multiple dimensions

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A fundamental question for both evolutionary biologists and breeders is the extent to which genetic correlations limit the ability of populations to respond to selection. Here I view this topic from three perspectives. First, I propose several nondimensional statistics to quantify the genetic variation present in a suite of traits and to describe the extent to which correlations limit their selection response. A review of five data sets suggests that the total variation differs substantially between populations. In all cases analyzed, however, the “effective number of dimensions” is less than two: more than half of the total genetic variation is explained by a single combination of traits. Second, I consider how patterns of variation affect the average evolutionary response to selection in a random direction. When genetic variation lies in a small number of dimensions but there are a large number of traits under selection, then the average selection response will be reduced substantially from its potential maximum. Third, I discuss how a low genetic correlation between male fitness and female fitness limits the ability of populations to adapt. Data from two recent studies of natural populations suggest this correlation can diminish or even erase any genetic benefit to mate choice. Together these results suggest that adaptation (in natural populations) and genetic improvement (in domesticated populations) may often be as much constrained by patterns of genetic correlation as by the overall amount of genetic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127:229–255

    PubMed  CAS  Google Scholar 

  • Beldade P, Koops K, Brakefield PM (2002a) Developmental constraints versus flexibility in morphological evolution. Nature 416:844–847. doi:10.1038/416844a

    Article  PubMed  CAS  Google Scholar 

  • Beldade P, Koops K, Brakefield PM (2002b) Modularity, individuality, and evo-devo in butterfly wings. Proc Natl Acad Sci USA 99:14262–14267. doi:10.1073/pnas.222236199

    Article  PubMed  CAS  Google Scholar 

  • Blows MW (2007) A tale of two matrices: multivariate approaches in evolutionary biology. J Evol Biol 20:1–8. doi:10.1111/j.1420-9101.2006.01164.x

    Article  PubMed  CAS  Google Scholar 

  • Blows M, Walsh B (2008) Spherical cows grazing in Flatland: constraints to selection and adaptation. In: van der Werf J, Graser HU, Frankham R, Gondro C (eds) Adaptation and fitness in animal populations: evolutionary and breeding perspectives on genetic resource management. Springer-Verlag, New York (in press)

  • Blows MW, Chenoweth SF, Hine E (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am Nat 163:329–340. doi:10.1086/381941

    Article  PubMed  Google Scholar 

  • Brakefield PM (2006) Evo-devo and constraints on selection. Trends Ecol Evol 21:362–368. doi:10.1016/j.tree.2006.05.001

    Article  PubMed  Google Scholar 

  • Brommer JE, Kirkpatrick M, Qvarnström A et al (2007) The intersexual genetic correlation for lifetime fitness in the wild and its implications for sexual selection. PLoSONE 2:e744. doi:710.1371/journal.pone.0000744

  • Brotherstone S, Goddard M (2005) Artificial selection and maintenance of genetic variance in the global dairy cow population. Philos Trans R Soc Lond B 360:1479–1488. doi: 10.1098/rstb.2005.1668

    Google Scholar 

  • Burt A (1995) Perspective: the evolution of fitness. Evol Int J Org Evol 49:1–8. doi:10.2307/2410288

    Google Scholar 

  • Calsbeek R, Sinervo B (2004) Within-clutch variation in offspring sex determined by differences in sire body size: cryptic mate choice in the wild. J Evol Biol 17:464–470. doi:10.1046/j.1420-9101.2003.00665.x

    Article  PubMed  Google Scholar 

  • Charlesworth B (1990) Optimization models, quantitative genetics, and mutation. Evol Int J Org Evol 44:520–538. doi:10.2307/2409433

    Google Scholar 

  • Chippindale AK, Gibson JR, Rice WR (2001) Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc Natl Acad Sci USA 98:1671–1675. doi:10.1073/pnas.041378098

    Article  PubMed  CAS  Google Scholar 

  • Delph LF, Gehring JL, Frey FM et al (2004) Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evol Int J Org Evol 58:1936–1946

    Google Scholar 

  • Dickerson GE (1955) Genetic slippage in response to selection for multiple objectives. Cold Spring Harb Symp Quant Biol 20:213–224

    PubMed  CAS  Google Scholar 

  • Fedorka KM, Mousseau TA (2004) Female mating bias results in conflicting sex-specific offspring fitness. Nature 429:65–67. doi:10.1038/nature02492

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1952) The genetical theory of natural selection, 2nd edn. Dover, New York

    Google Scholar 

  • Foerster K, Coulson T, Sheldon BC et al (2007) Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107–1109. doi:10.1038/nature05912

    Article  PubMed  CAS  Google Scholar 

  • Forsman A (1995) Opposing fitness consequences of colons pattern in male and female snakes. J Evol Biol 8:53–70. doi:10.1046/j.1420-9101.1995.8010053.x

    Article  Google Scholar 

  • Fowler K, Semple C, Barton NH et al (1997) Genetic variation for total fitness in Drosophila melanogaster. Proc R Soc Lond B Biol Sci 264:191–199. doi:10.1098/rspb.1997.0027

    Article  CAS  Google Scholar 

  • Griswold CK, Logsdon B, Gomulkiewicz R (2007) Neutral evolution of multiple quantitative characters: A genealogical approach. Genetics 176:455–466. doi:10.1534/genetics.106.069658

    Article  PubMed  CAS  Google Scholar 

  • Hansen TF, Pelabon C, Armbruster WS et al (2003) Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. J Evol Biol 16:754–766. doi:10.1046/j.1420-9101.2003.00556.x

    Article  PubMed  Google Scholar 

  • Hansen TF, Alvarez-Castro JM, Carter AJR et al (2006) Evolution of genetic architecture under directional selection. Evol Int J Org Evol 60:1523–1536

    Google Scholar 

  • Hayes JF, Hill WG (1981) Modification of estimates of parameters in the construction of genetic selection indices (‘bending’). Biometrics 37:483–493. doi:10.2307/2530561

    Article  Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21:309–310

    Google Scholar 

  • Henderson CR (1982) Analysis of covariance in the mixed model. Higher-level, non-homogeneous and random regressions. Biometrics 38:623–640. doi:10.2307/2530044

    Article  PubMed  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph Press, Guelph, Canada

    Google Scholar 

  • Hereford J, Hansen TF, Houle D (2004) Comparing strengths of directional selection: How strong is strong? Evol Int J Org Evol 58:2133–2143

    Google Scholar 

  • Hill WG, Thompson R (1978) Probabilities of non-positive definite between-group or genetic covariance matrices. Biometrics 34:429–439. doi:10.2307/2530605

    Article  Google Scholar 

  • Hine E, Blows MW (2006) Determining the effective dimensionality of the genetic variance-covariance matrix. Genetics 173:1135–1144. doi:10.1534/genetics.105.054627

    Article  PubMed  CAS  Google Scholar 

  • Hine E, Chenoweth SF, Blows MW (2004) Multivariate quantitative genetics and the lek paradox: genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evol Int J Org Evol 58:2754–2762

    CAS  Google Scholar 

  • Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:194–204

    Google Scholar 

  • Houle D, Morikawa B, Lynch M (1996) Comparing mutational variabilities. Genetics 143:1467–1483

    PubMed  CAS  Google Scholar 

  • Hunt J, Blows MW, Zajitschek F et al (2007) Reconciling strong stabilizing selection with the maintenance of genetic variation in a natural population of black field crickets (Teleogryllus commodus). Genetics 177:875–880. doi:10.1534/genetics.107.077057

    Article  PubMed  Google Scholar 

  • Jaffrezic F, Pletcher SD (2000) Statistical models for estimating the genetic basis of repeated measures and other function-valued traits. Genetics 156:913–922

    PubMed  CAS  Google Scholar 

  • Jaffrezic F, Thompson R, Pletcher SD (2004) Multivariate character process models for the analysis of two or more correlated function-valued traits. Genetics 168:477–487. doi:10.1534/genetics.103.019554

    Article  PubMed  Google Scholar 

  • Jennrich RI, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42:805–820. doi:10.2307/2530695

    Article  PubMed  CAS  Google Scholar 

  • Jones AG, Arnold SJ, Burger R (2004) Evolution and stability of the G-matrix on a landscape with a moving optimum. Evol Int J Org Evol 58:1639–1654

    Google Scholar 

  • Jones AG, Arnold SJ, Burger R (2007) The mutation matrix and the evolution of evolvability. Evol Int J Org Evol 61:727–745. doi:10.1111/j.1558-5646.2007.00071.x

    Google Scholar 

  • Kingsolver JG, Gomulkiewicz R, Carter PA (2001) Variation, selection and evolution of function-valued traits. Genetica 112:87–104. doi:10.1023/A:1013323318612

    Article  PubMed  Google Scholar 

  • Kirkpatrick M (1996) Genes and adaptation: a pocket guide to the theory. In: Rose MR, Lauder GV (eds) Adaptation. Academic Press, New York, pp 125–148

    Google Scholar 

  • Kirkpatrick M, Barton NH (1997) The strength of indirect selection on female mating preferences. Proc Natl Acad Sci USA 94:1282–1286. doi:10.1073/pnas.94.4.1282

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Hall DW (2004) Sexual selection and sex linkage. Evol Int J Org Evol 58:683–691

    Google Scholar 

  • Kirkpatrick M, Heckman N (1989) A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters. J Math Biol 27:429–450. doi:10.1007/BF00290638

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Lofsvold D (1989) The evolution of growth trajectories and other complex quantitative characters. Genome 31:778–783

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Lofsvold D (1992) Measuring selection and constraint in the evolution of growth. Evol Int J Org Evol 46:954–971. doi:10.2307/2409749

    Google Scholar 

  • Kirkpatrick M, Meyer K (2004) Direct estimation of genetic principal components: Simplified analysis of complex phenotypes. Genetics 168:2295–2306. doi:10.1534/genetics.104.029181

    Article  PubMed  Google Scholar 

  • Kirkpatrick M, Ryan MJ (1991) The evolution of mating preferences and the paradox of the lek. Nature 350:33–38. doi:10.1038/350033a0

    Article  Google Scholar 

  • Kirkpatrick M, Hill WG, Thompson R (1994) Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle. Genet Res 64:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Johnson T, Barton N (2002) General models of multilocus evolution. Genetics 161:1727–1750

    PubMed  Google Scholar 

  • Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B 359:873–890. doi:10.1098/rstb.2003.1437

    Article  Google Scholar 

  • Kruuk LEB, Clutton-Brock TH, Slate J et al (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97:698–703. doi:10.1073/pnas.97.2.698

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evol Int J Org Evol 33:402–416. doi:10.2307/2407630

    Google Scholar 

  • Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evol Int J Org Evol 34:292–305. doi:10.2307/2407393

    Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94:347–355. doi:10.1038/sj.hdy.6800615

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Burian R, Kauffman S et al (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287. doi:10.1086/414425

    Article  Google Scholar 

  • McCleery RH, Pettifor RA, Armbruster P et al (2004) Components of variance underlying fitness in a natural population of the great tit Parus major. Am Nat 164:E62–E72. doi:10.1086/422660

    Article  PubMed  CAS  Google Scholar 

  • McGuigan K, Blows MW (2007) The phenotypic and genetic covariance structure of drosphilid wings. Evol Int J Org Evol 61:902–911. doi:10.1111/j.1558-5646.2007.00078.x

    Google Scholar 

  • McGuigan K, Chenoweth SF, Blows MW (2005) Phenotypic divergence along lines of genetic variance. Am Nat 165:32–43. doi:10.1086/426600

    Article  PubMed  Google Scholar 

  • Meagher TR (1992) The quantitative genetics of sexual dimorphism in Silene latifolia (Caryophyllaceae). I. Genetic variation. Evol Int J Org Evol 46:445–457. doi:10.2307/2409863

    Google Scholar 

  • Meyer K (1989) Restricted maximum likelihood to estimate variance components for animal models with several random effects using a derivative-free algorithm. Genet Sel Evol 21:317–340. doi:10.1051/gse:19890308

    Article  Google Scholar 

  • Meyer K (2005) Genetic principal components for live ultrasound scan traits of Angus cattle. Anim Sci 81:337–345. doi:10.1079/ASC50850337

    Article  Google Scholar 

  • Meyer K (2006a) To have your steak and eat it: genetic principal component analysis for beef cattle data. 8th world congress on genetics applied to livestock production CD

  • Meyer K (2006b) “WOMBAT”—digging deep for quantitative genetic analyses using restricted maximum likelihood. CD ROM eighth world congress of genetics applied to livestock production comm. 27-14

  • Meyer K (2007) Multivariate analyses of carcass traits for Angus cattle fitting reduced rank and factor analytic models. J Anim Breed Genet 124:50–64. doi:10.1111/j.1439-0388.2007.00637.x

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Hill WG (1997) Estimation of genetic and phenotypic covariance functions for longitudinal or ‘repeated’ records by restricted maximum likelihood. Livest Prod Sci 47:185–200. doi:10.1016/S0301-6226(96)01414-5

    Article  Google Scholar 

  • Meyer K, Kirkpatrick M (2005a) Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices. Genet Sel Evol 37:1–30. doi:10.1051/gse:2004034

    Article  PubMed  Google Scholar 

  • Meyer K, Kirkpatrick M (2005b) Up hill, down dale: quantitative genetics of curvaceous traits. Philos Trans R Soc Lond B 360:1443–1455. doi:10.1098/rstb.2005.1681

    Article  Google Scholar 

  • Meyer K, Kirkpatrick M (2007) A note on bias in reduced rank estimates of covariance matrices. Proc Assoc Adv Anim Breed Genet 17:154–157

    Google Scholar 

  • Mezey JG, Houle D (2005) The dimensionality of genetic variation for wing shape in Drosophila melanogaster. Evol Int J Org Evol 59:1027–1038

    Google Scholar 

  • Moose SP, Dudley JW, Rocheford TR (2004) Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci 9:358–364. doi:10.1016/j.tplants.2004.05.005

    Article  PubMed  CAS  Google Scholar 

  • Mousseau TA, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59:181–197. doi:10.1038/hdy.1987.113

    Article  PubMed  Google Scholar 

  • Pander BL, Thompson R, Hill WG (1993) Phenotypic correlations among daily records of milk yields. Indian J Anim Sci 63:1282–1286

    Google Scholar 

  • Pettay JE, Kruuk LEB, Jokela J et al (2005) Heritability and genetic constraints of life-history trait evolution in preindustrial humans. Proc Natl Acad Sci USA 102:2838–2843. doi:10.1073/pnas.0406709102

    Article  PubMed  CAS  Google Scholar 

  • Phillips PC, Arnold SJ (1999) Hierarchical comparison of genetic variance-covariance matrices. I. Using the flury hierarchy. Evol Int J Org Evol 53:1506–1515. doi:10.2307/2640896

    Google Scholar 

  • Pischedda A, Chippindale AK (2006) Intralocus sexual conflict diminishes the benefits of sexual selection. PLoS Biol 4:2099–2103. doi:10.1371/journal.pbio.0040356

    Article  CAS  Google Scholar 

  • Pletcher SD, Geyer CJ (1999) The genetic analysis of age-dependent traits: Modeling the character process. Genetics 153:825–835

    PubMed  CAS  Google Scholar 

  • Powell RL, Norman HD (2006) Major advances in genetic evaluation techniques. J Dairy Sci 89:1337–1348

    Article  PubMed  CAS  Google Scholar 

  • Prasad NG, Bedhomme S, Day T et al (2007) An evolutionary cost of separate genders revealed by male-limited evolution. Am Nat 169:29–37. doi:10.1086/509941

    Article  PubMed  CAS  Google Scholar 

  • Price T, Schluter D (1991) On the low heritability of life history traits. Evol Int J Org Evol 45:853–861. doi:10.2307/2409693

    Google Scholar 

  • Qvarnstrom A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441:84–86. doi:10.1038/nature04564

    Article  PubMed  CAS  Google Scholar 

  • Riska B, Atchley WR, Rutledge JJ (1984) A genetic analysis of targeted growth in mice. Genetics 107:79–101

    PubMed  CAS  Google Scholar 

  • Roff DA (1997) Evolutionary quantitative genetics. Chapman and Hall, New York

    Google Scholar 

  • Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447. doi:10.1111/j.1420-9101.2006.01255.x

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer LR (2004) Application of random regression models in animal breeding. Livest Prod Sci 86:35–45. doi:10.1016/S0301-6226(03)00151-9

    Article  Google Scholar 

  • Schlosser G, Wagner GP (eds) (2004) Modularity in development and evolution. University of Chicago Press, Chicago

    Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evol Int J Org Evol 50:1766–1774. doi:10.2307/2410734

    Google Scholar 

  • Shaw RG (1987) Maximum likelihood approaches applied to quantitative genetics of natural populations. Evol Int J Org Evol 41:812–826. doi:10.2307/2408890

    Google Scholar 

  • Thompson R (1973) The estimation of variance and covariance components with an application when records are subject to culling. Biometrics 29:527–550. doi:10.2307/2529174

    Article  Google Scholar 

  • Weber KE (1990) Selection on wing allometry in Drosophila melanogaster. Genetics 126:975–989

    PubMed  CAS  Google Scholar 

  • Wolfram S (2003) The mathematica book. Wolfram Media, Champaign, Illinois

    Google Scholar 

  • Zhang XS, Wang JL, Hill WG (2002) Pleiotropic model of the maintenance of quantitative genetic variation at mutation-selection balance. Genetics 161:419–433

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to Katrina McGuigan for sharing unpublished data. The paper benefited greatly from discussions with and comments from K. Behrman, M. Blows, J. Brommer, P. David, D. Futuyma, D. Gomulkiewicz, R. Guerrero, W.G. Hill, D. Houle, P. Keightley, K. Meyer, T. Price, H. Rundle, S. Scarpino, S. Snowberg, W. Stutz, and two reviewers. This research was supported by NSF grant EF-0328594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Kirkpatrick.

Appendix

Appendix

Our goal is to calculate \( \overline{R} \), the average relative selection response to a selection gradient pointing in a random direction and with a fixed magnitude. Selection response is defined here as the length (norm) of \( \Updelta \widetilde{\mathbf{z}} \), the vector of proportional changes in the trait means. We will calculate that response relative to a hypothetical unconstrained population whose eigenvalues are all equal to the maximum eigenvalue of the focal population.

The average selection response is

$$ \bar{R} = \frac{{\int_{0}^{\pi } {\int_{0}^{\pi } \ldots {\int_{0}^{2\pi } {R(\Theta )} } } (\frac{dS}{d\Theta })d\theta _{1} d\theta _{2} \ldots d\theta _{n - 1} }}{{\lambda _{1} \int_{0}^{\pi } {\int_{0}^{\pi } \ldots {\int_{0}^{2\pi } {(\frac{dS}{d\Theta })d\theta _{1} d\theta _{2}\ldots d\theta _{n - 1} } } } }} $$
(A1)

The numerator is the expected selection response in the focal population, and the denominator is the response in the hypothetical unconstrained population. R(Θ) is the selection response to a selection gradient oriented in the direction given by the angles in the vector Θ whose elements are θ12,…,θn–1. The ratio (\( dS/d\Theta \)) is the change in surface area of a unit sphere per change in the angles Θ, and is given by

$$ \frac{dS}{d\Theta } = 2\prod\limits_{i = 1}^{n - 2} {\sin ^{i} \theta _{i} } $$
(A2)

(see http://en.wikipedia.org/wiki/Hypersphere).

Without loss of generality, we can choose coordinates that diagonalize the genetic covariance matrix. Then the eigenvalues are equal to the genetic variances (ordered from largest to smallest). The magnitude of the selection response to a given selection gradient β is

$$ R = \left[\sum\limits_{i = 1}^{n} {(\lambda _{i} \beta _{i})^{2} } \right]^{1/2} $$
(A3)

where \( \lambda _{i} \) is again the ith eigenvalue and \( \beta _{i} \) is the element of the selection gradient corresponding to that trait. For a selection gradient of unit length, R can be converted to the polar coordinates of Eq. A1 using

$$ \beta _{i} = \cos _{i,n}^{*} (\theta _{i} )\prod\limits_{j = 1}^{i - 1} {\sin (\theta _{j} )} $$
(A4)

where

$$ \cos _{i,n}^{*} (\theta _{i} ) = \left\{ {\begin{array}{*{20}c} {\cos (\theta _{i} )\quad {\text{if}}\,i \ne n} \\ {1\quad\quad {\text{if}}\,i = n} \\ \end{array} } \right. $$
(A5)

Substituting Eqs. A2–A5 into (A1) gives the average selection response \( \overline{R} \) in terms of integrals that can be evaluated numerically once the eigenvalues are specified.

I calculated \( \overline{R} \) this way using Mathematica (Wolfram 2003) for the three scalar-valued data sets. The results are shown in Table 2. For the function-valued traits, the average selection response is 0 because only a finite number of eigenvalues are positive, but there are an infinite number of trait combinations on which selection could theoretically act.

To better understand how the distribution of eigenvalues affects \( \overline{R} \), I then considered hypothetical populations in which the eigenvalues decline geometrically (exponentially). The ratio of successive eigenvalues of the standardized genetic covariance matrix, which is constant, is denoted k. Thus k = 1 is the case where all traits have equal genetic variance and no correlation, while if k = 0 all genetic variation lies along a single dimension. It is convenient to set the leading eigenvector to λ1 = 1. The value of the ith eigenvalue is then

$$ \lambda _{i} = k_{{}}^{i - 1} \lambda _{1}^{{}} . $$
(A6)

Substituting that expression into (A3) and then numerically integrating (A1) using Mathematica (Wolfram 2003) gives the results shown in Fig. 3.

It is possible to get simple analytic expressions for two special cases. With k = 1, the population has no constraints, and one can show Eq. A1 is equal to unity (as it must). At the other extreme, consider the case of k = 0, so that all genetic variation lies in a single dimension. Then we get

$$ \begin{aligned} \bar{R} &= \frac{{\int_{0}^{\pi } {\int_{0}^{\pi } \ldots {\int_{0}^{2\pi } {|\cos \theta _{1} |(\prod\limits_{k = 1}^{n - 2} {\sin ^{k} \theta _{k} } )} } } d\theta _{1} d\theta _{2} \ldots d\theta _{n - 1} }}{{\int_{0}^{\pi } {\int_{0}^{\pi } \ldots{\int_{0}^{2\pi } {(\prod\limits_{k = 1}^{n - 2} {\sin ^{k} \theta _{k} } )} } } d\theta _{1} d\theta _{2} \ldots d\theta _{n - 1} }}\\ &= \frac{2\Upgamma (n/2)}{(n - 1)\sqrt \pi \Upgamma ((n - 1)/2)} \end{aligned} $$
(A7)

where Γ() is the gamma function. This appears in the text as Eq. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkpatrick, M. Patterns of quantitative genetic variation in multiple dimensions. Genetica 136, 271–284 (2009). https://doi.org/10.1007/s10709-008-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9302-6

Keywords

Navigation