Skip to main content

Advertisement

Log in

Phylogenetic relationships and macro-evolutionary patterns within the Drosophila tripunctata “radiation” (Diptera: Drosophilidae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Despite previous efforts, the evolutionary history of the immigrans-tripunctata clade remains obscure in part due to its hypothesized origin through a rapid radiation. We performed a supermatrix analysis (3,243 base pairs) coupled with richness patterns, environmental phylogenetic signal and radiation tests in order to address phylogenetic relationships and macro-evolutionary hypotheses within this complex group of species. We propose a well-supported evolutionary scenario for the immigrans-tripunctata clade species, in which the tripunctata “radiation” was monophyletic and subdivided into three main lineages: the first including D. pallidipennis (pallidipennis group) imbedded among members of the tripunctata group; the second clustering the cardini and guarani groups; and the third grouping representatives from the tripunctata, calloptera and guaramunu groups. Therefore, we hypothesize that the tripunctata group encompasses a diphyletic taxon, with one clade including the pallidipennis group and the other showing a close affinity to the calloptera and guaramunu groups. Our results also suggest that niche evolution seems to have played a central role in the evolutionary history of the tripunctata species “radiation” allowing effective dispersion and diversification in the Neotropics, possibly in a southwards direction. Although the data as a whole support the notion that this occurred through rapid and successive speciation events, the radiation hypothesis remains to be further corroborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723

    Article  Google Scholar 

  • Bächli G (2009) TaxoDros: the database on taxonomy of Drosophilidae, v.1.03, Database 2009/7. http://taxodros.unizh.ch/. Accessed on 27 Feb 2009

  • Blomberg SP, Garland T Jr (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Böhning-Gaese K, Schuda MD, Helbig AJ (2003) Weak phylogenetic effects on ecological niches of Sylvia warblers. J Evol Biol 16:956–965

    Article  PubMed  Google Scholar 

  • Brisson JA, Wilder J, Hollocher H (2006) Phylogenetic analysis of the cardini group of Drosophila with respect to changes in pigmentation. Evolution 60:1228–1247

    CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    CAS  PubMed  Google Scholar 

  • DaLage JL, Dergoat GJ, Maczkowiak F, Silvain JF, Cariou ML, Lachaise D (2007) A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J Zoolog Syst Evol Res 45:47–63

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Farris JS, Källersjö M, Kluge A, Bult C (1994) Testing significance of congruence. Cladistics 10:315–320

    Article  Google Scholar 

  • Farris JS, Källersjö M, Kluge A, Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572

    Google Scholar 

  • Frota-Pessoa O (1954) Revision of the tripunctata group of Drosophila with description of fifteen new species (Drosophilidae, Diptera). Arq Mus Paranaense X:253–304

    Google Scholar 

  • Gottschalk MS (2008) Utilização de recursos tróficos por espécies Neotropicais de Drosophilidae (Diptera). Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hatadani LM, McInerney JO, Medeiros HF, Junqueira ACM, Azeredo-Espin AM, Klaczko LB (2009) Molecular phylogeny of the Drosophila tripunctata and closely related groups (Diptera: Drosophilidae). Mol Phylogenet Evol 51:595–600

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Soeler SA (2005) Water links the historical and contemporary components of the Australian bird diversity gradient. J Biogeogr 32:1035–1042

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Jaramillo CA, Soeller SA (2006) Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. J Biogeogr 33:770–780

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2004) The WordClim interpolated global terrestrial climate surfaces, version 1.3. http://biogeo.berkeley.edu/

  • Hijmans RJ, Guarino L, Jarvis A, O’Brien R, Mathur P, Bussink C, Cruz M, Barrantes I, Rojas E (2005a) Diva-GIS version 5.2. Manual. International Potato Center, Lima

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005b) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Kastritsis CD (1969) The chromosomes of some species of the guarani group of Drosophila. J Heredity 60:50–57

    CAS  Google Scholar 

  • Katoh T, Nakaya D, Tamura K, Aotsuka T (2007) Phylogeny of the Drosophila immigrans species group (Diptera: Drosophilidae) based on Adh and Gpdh sequences. Zoolog Sci 24:913–921

    Article  CAS  PubMed  Google Scholar 

  • Kwiatowski J, Ayala FJ (1999) Phylogeny of Drosophila and related genera: conflict between molecular and anatomical analyses. Mol Phylogenet Evol 13:319–328

    Article  CAS  PubMed  Google Scholar 

  • Lee MSY, Hugall AF (2003) Partitioned likelihood support and the evaluation of data set conflicts. Syst Biol 52:15–22

    Article  CAS  PubMed  Google Scholar 

  • Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationships between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007

    Article  PubMed  Google Scholar 

  • Löwenberg-Neto P, Carvalho CJB, Diniz-Filho JAF (2008) Spatial congruence between biotic history and species richness of Muscidae (Diptera, Insecta) in the Andean and Neotropical regions. J Zoolog Syst Evol Res 46:374–380

    Article  Google Scholar 

  • Malogolowkin C (1953) Sobre a genitália dos Drosofilídeos. IV. A genitália masculina do gênero Drosophila. Rev Brasil Biol 13:245–264

    Google Scholar 

  • Mota NR, Robe LJ, Valente VLS, Budnik M, Loreto ELS (2008) Phylogeny of the Drosophila mesophragmatica group (Diptera, Drosophilidae): an example of Andean evolution. Zoolog Sci 25:526–532

    Article  CAS  PubMed  Google Scholar 

  • Nylander JA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center, Uppsala University

  • Pearman P, Guisan A, Broennimann O, Randin C (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Perlman SJ, Spicer GS, Shoemaker DD, Jaenike J (2003) Associations between mycophagous Drosophila and their Howardula nematode parasites: a worldwide phylogenetic shuffle. Mol Ecol 12:237–249

    Article  CAS  PubMed  Google Scholar 

  • Posada C, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc Lond B 267:2267–2272

    Article  CAS  Google Scholar 

  • Pybus OG, Rambaut A (2002) GENIE: genealogy interval explorer. Department of Zoology. University of Oxford, Oxford

    Google Scholar 

  • Rambaut A (2002) PhyloGen, version 1.0. Department of Zoology, University of Oxford, Oxford

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer

  • Remsen J, DeSalle R (1998) Character congruence and multiple data partitions and the origin of the Hawaiian Drosophilidae. Mol Phylogenet Evol 9:225–235

    Article  CAS  PubMed  Google Scholar 

  • Remsen J, O’Grady PO (2002) Phylogeny of Drosophilinae (Diptera: Drosopilidae) with comments on combined analysis and character support. Mol Phylogenet Evol 24:249–264

    Article  PubMed  Google Scholar 

  • Robe LJ, Valente VLS, Budnik M, Loreto ELS (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol Phylogenet Evol 36:623–640

    Article  CAS  PubMed  Google Scholar 

  • Robe LJ, Loreto ELS, Valente VLS (2010) Radiation of the “Drosophila” subgenus (Drosophilidae, Diptera) in the Neotropics. J Zool Syst Evol Res. doi: 10.1111/j.1439-0469.2009.00563.x

  • Rosenberg M (2009) PASSaGE: Pattern analysis, spatial statistics, and geographic exegesis. Center for evolutionary functional genomics/biodesign institute. Arizona State University

  • Russo CAM, Takezaki N, Nei M (1995) Molecular phylogeny and divergence times of Drosophilid species. Mol Biol Evol 12:391–404

    CAS  PubMed  Google Scholar 

  • Sassi AK, Heredia F, Loreto ELS, Valente VLS, Rohde C (2005) Transposable elements P and gypsy in natural populations of Drosophila willistoni. Genet Mol Biol 28:734–739

    Article  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Sorenson MD, Franzosa EA (2007) TreeRot, version 3. Boston University, Boston

    Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP: phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Massachusetts

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tatarenkov A, Kwiatowski J, Sharecky D, Barrío E, Ayala FJ (1999) On the evolution of Dopa decarboxylase (Ddc) and Drosophila systematics. J Mol Evol 48:445–462

    Article  CAS  PubMed  Google Scholar 

  • Tatarenkov A, Zurovcová M, Ayala FJ (2001) Ddc and Amd sequences resolve phylogenetic relationships of Drosophila. Mol Phylogenet Evol 20:321–325

    Article  CAS  PubMed  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics. Plenum, New York, pp 421–469

    Google Scholar 

  • Val FC, Marques MD, Vilela CR (1981) Drosophilidae of neotropical region. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila. Academic Press, Orlando, pp 123–168

    Google Scholar 

  • van der Linde K, Houle D (2008) A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae). Insect Syst Evol 39:241–267

    Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche Conservatism: integrating evolution, ecology and conservation biology. Annu Rev Ecol Evol Syst 36:139–519

    Article  Google Scholar 

  • Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of hight tropical diversity. Am Nat 168:579–596

    Article  PubMed  Google Scholar 

  • Yotoko KSC, Medeiros HF, Solferini VN, Klaczko LB (2003) A molecular study of the systematics of the Drosophila tripunctata group and the tripunctata radiation. Mol Phylogenet Evol 28:614–619

    Article  CAS  PubMed  Google Scholar 

  • Zachos J, Pagani H, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the fly suppliers for making this study possible, to Dr. Nicolás Mega for the statistical assistance and to Mr. Félix Nonnemacher for English correction. We also thank the reviewers for the valuable comments and suggestions. This research was supported by the Brazilian agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizandra J. Robe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robe, L.J., Valente, V.L.S. & Loreto, E.L.S. Phylogenetic relationships and macro-evolutionary patterns within the Drosophila tripunctata “radiation” (Diptera: Drosophilidae). Genetica 138, 725–735 (2010). https://doi.org/10.1007/s10709-010-9453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9453-0

Keywords

Navigation