Skip to main content
Log in

Revealing the anti-HRP epitope in Drosophila and Caenorhabditis

  • MiniReview
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Antibodies are very often used as specific cell and/or tissue markers. An example of this is anti-horseradish peroxidase (HRP), an antibody raised against a plant glycoprotein, which was shown some twenty-five years ago to specifically stain neural tissue in an animal, Drosophila melanogaster. This peculiar finding was later expanded to other invertebrate species including Caenorhabditis elegans, which were also shown to bear anti-HRP epitopes. Initial experiments indicated that the epitopes recognised by anti-HRP in invertebrates are of carbohydrate nature. Indeed, more recent experiments have characterised relevant core α1-3-fucosylated N-glycan structures that act as epitopes in various model and parasitic organisms. Moreover, a number of enzymes required for the synthesis of such structures have been identified. Over the years, medically-relevant roles of these structures have become apparent as regards allergenicity and immunoregulation. Although major advances have been made in understanding of the underlying mechanisms and structures related to the anti-HRP epitope, the in vivo role of the relevant epitopes in neural and other tissues is yet to be resolved. Current understanding of the anti-HRP epitopes synthesis and their relevance is discussed and elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Rectal papillae: specialised part of an insect’s rectum being responsible for water and ion uptake; Garland cell: nephrocyte taking up waste products from the haemolymph; pericardial cell: nephrocyte contributing to haemolymph recycling; accessory glands: become functional in adult insects, their secretion is involved in the reproductive system (e.g., spermatophore production)

  2. During gastrulation cells migrate to form the first three layers: mesoderm, endoderm and ectoderm; from the latter the brain and nervous system will develop.

Abbreviations

GlcNAc-TI:

N-acetylglucosaminyltransferase I

HRP:

horseradish peroxidase

MGnF6 :

Manα1–6(GlcNAcβ1–2Manα1–3)Manβ1–4GlcNAcβ1–4(Fucα1–6)GlcNAc

MM:

Manα1–6(Manα1–3)Manβ1–4GlcNAcβ1–4GlcNAc

MMF3F6 :

Manα1–6(Manα1–3)Manβ1–4GlcNAcβ1–4(Fucα1–6)(Fucα1–3)GlcNAc (see also Fig. 5)

MMXF3 :

Manα1–6(Manα1–3)(Xylβ1–2)Manβ1–4GlcNAcβ1–4(Fucα1–3)GlcNAc (see also Fig. 3)

MO:

Manα1–6Manβ1–4GlcNAcβ1–4GlcNAc

MOXF3 :

Manα1–6(Xylβ1–2)Manβ1–4GlcNAcβ1–4(Fucα1–3)GlcNAc

Man4XF3 :

Manα1–3/6Manα1–6(Manα1–3)(Xylβ1–2)Manβ1–4GlcNAcβ1–4(Fucα1–3)GlcNAc

References

  1. Jan, L.Y., Jan, Y.N.: Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proc. Natl. Acad. Sci. U.S.A. 79, 2700–2704 (1982)

    Article  PubMed  CAS  Google Scholar 

  2. Salvaterra, P.M., Bournias-Vardiabasis, N., Nair, T., Hou, G., Lieu, C.: In vitro neuronal differentiation of Drosophila embryo cells. J. Neurosci. 7, 10–22 (1987)

    PubMed  CAS  Google Scholar 

  3. Wang, X., Sun, B., Yasuyama, K., Salvaterra, P.M.: Biochemical analysis of proteins recognised by anti-HRP antibodies in Drosophila melanogaster: identification of neuron specific and male specific glycoproteins. Insect Biochem. Mol. Biol. 24, 233–242 (1994)

    Article  PubMed  CAS  Google Scholar 

  4. Siddiqui, S.S., Culotti, J.G.: Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. J. Neurogenet. 7, 193–211 (1991)

    Article  PubMed  CAS  Google Scholar 

  5. Haase, A., Stern, M., Wachtler, K., Bicker, G.: A tissue-specific marker of Ecdysozoa. Dev. Genes Evol. 211, 428–433 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., Lake, J.A.: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997)

    Article  PubMed  CAS  Google Scholar 

  7. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa, R.: The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. U.S.A. 97, 4453–4456 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. Katz, F., Moats, W., Jan, Y.N.: A carbohydrate epitope expressed uniquely on the cell surface of Drosophila neurons is altered in the mutant nac (neurally altered carbohydrate). EMBO J. 7, 3471–3477 (1988)

    PubMed  CAS  Google Scholar 

  9. Snow, P.M., Patel, N.H., Harrelson, A.L., Goodman, C.S.: Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embyros. J. Neurosci. 7, 4137–4144 (1987)

    PubMed  CAS  Google Scholar 

  10. Yasuda, Y., Takahashi, N., Murachi, T.: The composition and structure of carbohydrate moiety of stem bromelain. Biochemistry 9, 25–32 (1970)

    Article  PubMed  CAS  Google Scholar 

  11. Ishihara, H., Takahashi, N., Oguri, S., Tejima, S.: Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J. Biol. Chem. 254, 10715–10719 (1979)

    PubMed  CAS  Google Scholar 

  12. Kurosaka, A., Yano, A., Itoh, N., Kuroda, Y., Nakagawa, T., Kawasaki, T.: The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J. Biol. Chem. 266, 4168–4172 (1991)

    PubMed  CAS  Google Scholar 

  13. Veitch, N.C.: Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. Shannon, L.M., Kay, E., Lew, J.Y.: Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241, 2166–2172 (1966)

    PubMed  CAS  Google Scholar 

  15. Wuhrer, M., Balog, C.I., Koeleman, C.A., Deelder, A.M., Hokke, C.H.: New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim. Biophys. Acta 1723, 229–239 (2005)

    PubMed  CAS  Google Scholar 

  16. Yang, B.Y., Gray, J.S.S., Montgomery, R.: The glycans of horseradish peroxidase. Carbohydr. Res. 287, 203–212 (1996)

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi, N., Lee, K.B., Nakagawa, H., Tsukamoto, Y., Masuda, K., Lee, Y.C.: New N-glycans in horseradish peroxidase. Anal. Biochem. 255, 183–187 (1998)

    Article  PubMed  CAS  Google Scholar 

  18. Wilson, I.B.H., Harthill, J.E., Mullin, N.P., Ashford, D.A., Altmann, F.: Core α1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8, 651–661 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. Jin, C., Bencúrová, M., Borth, N., Ferko, B., Jensen-Jarolim, E., Altmann, F., Hantusch, B.: Immunoglobulin G specifically binding plant N-glycans with high affinity could be generated in rabbits but not in mice. Glycobiology 16, 349–357 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Pöltl, G., Ahrazem, O., Paschinger, K., Ibañez, M.D., Salcedo, G., Wilson, I.B.H.: Molecular and immunological characterization of the glycosylated orange allergen Cit s 1. Glycobiology 17, 220–230 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. Aalberse, R.C., Koshte, V., Clemens, J.G.J.: Cross-reactions between vegetable foods, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant. Int. Arch. Allergy Appl. Immunol. 66(Suppl 1), 259–260 (1981)

    CAS  Google Scholar 

  22. Garcia-Casado, G., Sanchez-Monge, R., Chrispeels, M.J., Armentia, A., Salcedo, G., Gomez, L.: Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6, 471–477 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. Tretter, V., Altmann, F., Kubelka, V., März, L., Becker, W.M.: Fucose α1,3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. Int. Arch. Allergy Immunol. 102, 259–266 (1993)

    PubMed  CAS  Google Scholar 

  24. Wilson, I.B.H., Zeleny, R., Kolarich, D., Staudacher, E., Stroop, C.J.M., Kamerling, J.P., Altmann, F.: Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, α1,3-fucose and xylose substitutions. Glycobiology 11, 261–274 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Wilson, I.B.H., Altmann, F.: Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: core α1,3-linked fucose and xylose present in all pollens examined. Glycoconj. J. 15, 1055–1070 (1998)

    Article  PubMed  CAS  Google Scholar 

  26. Faye, L., Chrispeels, M.J.: Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconj. J. 5, 245–256 (1988)

    Article  CAS  Google Scholar 

  27. Koshte, V.L., Kagen, S.L., Aalberse, R.C.: Cross-reactivity of IgE antibodies to caddis fly with Arthropoda and Mollusca. J. Allergy Clin. Immunol. 84, 174–183 (1989)

    Article  PubMed  CAS  Google Scholar 

  28. Prenner, C., Mach, L., Glössl, J., März, L.: The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of α1,3-fucosylation of the asparagine-bound N-acetylglucosamine. Biochem J 284, 377–380 (1992)

    PubMed  CAS  Google Scholar 

  29. Fötisch, K., Vieths, S.: N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconj J 18, 373–390 (2001)

    Article  PubMed  Google Scholar 

  30. Lauriere, M., Lauriere, C., Chrispeels, M.J., Johnson, K.D., Sturm, A.: Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins. Plant Physiol. 90, 1182–1188 (1989)

    Article  PubMed  CAS  Google Scholar 

  31. Ramirez-Soto, D., Poretz, R.D.: The (1®3)-linked α-L-fucosyl group of the N-glycans of the Wistaria floribunda lectins is recognized by a rabbit antiserum. Carbohydr. Res. 213, 27–36 (1991)

    Article  PubMed  CAS  Google Scholar 

  32. Kaladas, P.M., Kabat, E.A., Iglesias, J.L., Lis, H., Sharon, N.: Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Arch. Biochem. Biophys. 217, 624–637 (1982)

    Article  PubMed  CAS  Google Scholar 

  33. Snow, P.M., Zinn, K., Harrelson, A.L., McAllister, L., Schilling, J., Bastiani, M.J., Makk, G., Goodman, C.S.: Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper. Proc. Natl. Acad. Sci. U.S.A. 85, 5291–5295 (1988)

    Article  PubMed  CAS  Google Scholar 

  34. Desai, C.J., Popova, E., Zinn, K.: A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the “HRP” carbohydrate epitope. J. Neurosci. 14, 7272–7283 (1994)

    PubMed  CAS  Google Scholar 

  35. Sun, B., Salvaterra, P.M.: Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen recognized by anti-horseradish peroxidase antibodies. J. Neurochem. 65, 434–443 (1995)

    PubMed  CAS  Google Scholar 

  36. Sun, B., Wang, W., Salvaterra, P.M.: Functional analysis and tissue-specific expression of Drosophila Na+, K+-ATPase subunits. J. Neurochem. 71, 142–151 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. Seppo, A., Matani, P., Sharrow, M., Tiemeyer, M.: Induction of neuron-specific glycosylation by Tollo/Toll-8, a Drosophila Toll-like receptor expressed in non-neural cells. Development 130, 1439–1448 (2003)

    Article  PubMed  CAS  Google Scholar 

  38. Sarkar, M., Leventis, P.A., Silvescu, C.I., Reinhold, V.N., Schachter, H., Boulianne, G.L.: Null mutations in Drosophila N-acetylglucosaminyltransferase I produce defects in locomotion and a reduced lifespan. J. Biol. Chem. 281, 12776–12785 (2006)

    Article  PubMed  CAS  Google Scholar 

  39. Okajima, T., Reddy, B., Matsuda, T., Irvine, K.D.: Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biol. 6, 1 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Rhomberg, S., Fuchsluger, C., Rendić, D., Paschinger, K., Jantsch, V., Kosma, P., Wilson, I.B.H.: Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J. 273, 2244–2256 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Dubruille, R., Laurencon, A., Vandaele, C., Shishido, E., Coulon-Bublex, M., Swoboda, P., Couble, P., Kernan, M., Durand, B.: Drosophila regulated factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5847–5498 (2002)

    Article  Google Scholar 

  42. Whitlock, K.E.: Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development 117, 1251–1260 (1993)

    PubMed  CAS  Google Scholar 

  43. Staudacher, E., Altmann, F., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.G.: α1–6(α 1–3)-Difucosylation of the asparagine-bound N-acetylglucosamine in honeybee venom phospholipase A2. Glycoconj. J. 9, 82–85 (1992)

    Article  PubMed  CAS  Google Scholar 

  44. Staudacher, E., Altmann, F., Glössl, J., März, L., Schachter, H., Kamerling, J.P., Hård, K., Vliegenthart, J.F.G.: GDP-fucose: β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands—the difucosylation of asparagine-bound N-acetylglucosamine. Eur. J. Biochem. 199, 745–751 (1991)

    Article  PubMed  CAS  Google Scholar 

  45. Rendić, D., Klaudiny, J., Stemmer, U., Schmidt, J., Paschinger, K., Wilson, I.B.H.: Towards abolition of immunogenic structures in insect cells: characterisation of a honeybee multi-gene family reveals both an allergy-related core α1,3-fucosyltransferase and the first insect Lewis histo-blood group-related antigen synthesising enzyme. Biochem. J. 402, 105–115 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. Staudacher, E., Kubelka, V., März, L.: Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur. J. Biochem. 207, 987–993 (1992)

    Article  PubMed  CAS  Google Scholar 

  47. Kubelka, V., Altmann, F., Kornfeld, G., März, L.: Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch. Biochem. Biophys. 308, 148–157 (1994)

    Article  PubMed  CAS  Google Scholar 

  48. Rendić, D., Wilson, I.B.H., Lubec, G., Gutternigg, M., Altmann, F., Leonard, R.: Adaptation of the “in-gel release method” to N-glycome analysis of low-milligram amounts of material. Electrophoresis 28, 4484–4492 (2007)

    Article  PubMed  CAS  Google Scholar 

  49. Hsu, T.A., Takahashi, N., Tsukamoto, Y., Kato, K., Shimada, I., Masuda, K., Whiteley, E.M., Fan, J.Q., Lee, Y.C., Betenbaugh, M.J.: Differential N-glycan patterns of secreted and intracellular IgG produced in Trichoplusia ni cells. J. Biol. Chem. 272, 9062–9070 (1997)

    Article  PubMed  CAS  Google Scholar 

  50. Ding, H., Griesel, C., Nimtz, M., Conradt, H.S., Weich, H.A., Jager, V.: Molecular cloning, expression, purification, and characterization of soluble full-length, human interleukin-3 with a baculovirus-insect cell expression system. Protein Expr. Purif. 31, 34–41 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. Hancock, K., Narang, S., Pattabhi, S., Yushak, M.L., Khan, A., Lin, S.C., Plemons, R., Betenbaugh, M.J., Tsang, V.C.: False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Five insect cells: effect of glycosylation. J. Immunol. Methods 330, 130–136 (2008)

    Article  PubMed  CAS  Google Scholar 

  52. Rendić, D., Wilson, I.B.H., Paschinger, K.: The glycosylation capacity of insect cells. Croatica Chimica Acta 81, 7–21 (2008)

    Google Scholar 

  53. Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F., Roberts, D.R.: Characterisation of oligosaccharides from Drosophila melanogaster glycoproteins. Biochim. Biophys. Acta Gen. Subj. 1075, 146–153 (1991)

    Article  CAS  Google Scholar 

  54. Fabini, G., Freilinger, A., Altmann, F., Wilson, I.B.H.: Identification of core α1,3-fucosylated glycans and the requisite fucosyltransferase in Drosophila melanogaster. Potential basis of the neural anti-horseradish peroxidase epitope. J. Biol. Chem. 276, 28058–28067 (2001)

    Article  PubMed  CAS  Google Scholar 

  55. Rendić, D., Linder, A., Paschinger, K., Borth, N., Wilson, I.B.H., Fabini, G.: Modulation of neural carbohydrate epitope expression in Drosophila melanogaster cells. J. Biol. Chem. 281, 3343–3353 (2006)

    Article  PubMed  CAS  Google Scholar 

  56. Bouyain, S., Silk, N.J., Fabini, G., Drickamer, K.: An endogenous Drosophila receptor for glycans bearing α1,3-linked core fucose residues. J. Biol. Chem. 277, 22566–22572 (2002)

    Article  PubMed  CAS  Google Scholar 

  57. Saudan, P., Hauck, K., Soller, M., Choffat, Y., Ottiger, M., Spörri, M., Ding, Z., Hess, D., Gehrig, P.M., Klauser, S., Hunziker, P., Kubli, E.: Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur. J. Biochem. 269, 989–997 (2002)

    Article  PubMed  CAS  Google Scholar 

  58. Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L., Tiemeyer, M.: Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142 (2007)

    Article  PubMed  CAS  Google Scholar 

  59. North, S.J., Koles, K., Hembd, C., Morris, H.R., Dell, A., Panin, V.M., Haslam, S.M.: Glycomic studies of Drosophila melanogaster embryos. Glycoconj. J. 23, 345–354 (2006)

    Article  PubMed  CAS  Google Scholar 

  60. Rendić, D., Linder, A., Paschinger, K., Borth, N., Wilson, I.B.H., Fabini, G.: Modulation of neural carbohydrate epitope expression in Drosophila melanogaster cells. J. Biol. Chem. 281, 3343–3353 (2006)

    Article  PubMed  CAS  Google Scholar 

  61. Haslam, S.M., Coles, G.C., Munn, E.A., Smith, T.S., Smith, H.F., Morris, H.R., Dell, A.: Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures. J. Biol. Chem. 271, 30561–30570 (1996)

    Article  PubMed  CAS  Google Scholar 

  62. Haslam, S.M., Coles, G.C., Reason, A.J., Morris, H.R., Dell, A.: The novel core fucosylation of Haemonchus contortus N-glycans is stage specific. Mol. Biochem. Parasitol. 93, 143–147 (1998)

    Article  PubMed  CAS  Google Scholar 

  63. van Die, I., Gomord, V., Kooyman, F.N.J., van der Berg, T.K., Cummings, R.D., Vervelde, L.: Core α1→3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett. 463, 189–193 (1999)

    Article  PubMed  Google Scholar 

  64. Haslam, S.M., Dell, A.: Hallmarks of Caenorhabditis elegans N-glycosylation: complexity and controversy. Biochimie 85, 25–32 (2003)

    Article  PubMed  CAS  Google Scholar 

  65. Paschinger, K., Gutternigg, M., Rendić, D., Wilson, I.B.H.: The N-glycosylation of Caenorhabditis elegans. Carbohydr Res, 343, 2041–2049 (2008). doi:10.1016/j.carres.2007.12.018

    Article  PubMed  CAS  Google Scholar 

  66. Pöltl, G., Kerner, D., Paschinger, K., Wilson, I.B.H.: N-Glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J. 274, 714–726 (2007)

    Article  PubMed  CAS  Google Scholar 

  67. Duffy, M.S., Morris, H.R., Dell, A., Appleton, J.A., Haslam, S.M.: Protein glycosylation in Parelaphostrongylus tenuis—First description of the Galα1–3Gal sequence in a nematode. Glycobiology 16, 854–862 (2006)

    Article  PubMed  CAS  Google Scholar 

  68. Hanneman, A.J., Rosa, J.C., Ashline, D., Reinhold, V.: Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16, 874–890 (2006)

    Article  PubMed  CAS  Google Scholar 

  69. Gutternigg, M., Kretschmer-Lubich, D., Paschinger, K., Rendić, D., Hader, J., Geier, P., et al.: Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants and insects. J Biol. Chem. 282(38), 27825–27840 (2007)

    Article  PubMed  CAS  Google Scholar 

  70. Paschinger, K., Rendić, D., Lochnit, G., Jantsch, V., Wilson, I.B.H.: Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J. Biol. Chem. 279, 49588–49598 (2004)

    Article  PubMed  CAS  Google Scholar 

  71. Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., Wilson, I.B.H.: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15, 463–474 (2005)

    Article  PubMed  CAS  Google Scholar 

  72. Tawill, S., Le Goff, L., Ali, F., Blaxter, M., Allen, J.E.: Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect. Immun. 72, 398–407 (2004)

    Article  PubMed  CAS  Google Scholar 

  73. Shi, H., Tan, J., Schachter, H.: N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol. 417, 359–389 (2006)

    Article  PubMed  CAS  Google Scholar 

  74. Takahashi, N., Masuda, K., Hiraki, K., Yoshihara, K., Huang, H.-H., Khoo, K.-H., Kato, K.: N-glycan structures of squid rhodopsin. Existence of the α1–3 and α1–6 difucosylated innermost GlcNAc residue in a molluscan glycoprotein. Eur. J. Biochem. 270, 2627–2632 (2004)

    Article  CAS  Google Scholar 

  75. Gutternigg, M., Ahrer, K., Grabher-Meier, H., Burgmayr, S., Staudacher, E.: Neutral N-glycans of the gastropod Arion lusitanicus. Eur. J. Biochem. 271, 1348–1356 (2004)

    Article  PubMed  CAS  Google Scholar 

  76. Gutternigg, M., Bürgmayr, S., Pöltl, G., Rudolf, J., Staudacher, E.: Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj. J. 24, 475–489 (2007)

    Article  PubMed  CAS  Google Scholar 

  77. Geyer, H., Wuhrer, M., Resemann, A., Geyer, R.: Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. J. Biol. Chem. 280, 40731–40748 (2005)

    Article  PubMed  CAS  Google Scholar 

  78. Lehr, T., Geyer, H., Maass, K., Doenhoff, M.J., Geyer, R.: Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 17, 82–103 (2007)

    Article  PubMed  CAS  Google Scholar 

  79. Faveeuw, C., Mallevaey, T., Paschinger, K., Wilson, I.B.H., Fontaine, J., Mollicone, R., Oriol, R., Altmann, F., Lerouge, P., Capron, M., Trottein, F.: Schistosome N-glycans containing core α3-fucose and core β2-xylose epitopes are strong inducers of Th2 responses in mice. Eur. J. Immunol. 33, 1271–1281 (2003)

    Article  PubMed  CAS  Google Scholar 

  80. Amatayakul-Chantler, S., Ferguson, M.A.J., Dwek, R.A., Rademacher, T.W., Parekh, R.B., Crandall, I.E., Newell, P.C.: Cell surface oligosaccharides on Dictyostelium during development. J. Cell Sci. 99, 485–495 (1991)

    CAS  Google Scholar 

  81. Schiller, B., Voglmeir, J., Geyer, R., Pöltl, G., Karl, S., Wilson, I.B.H.: The N-glycosylation potential of Dictyostelium discoideum. FEBS J. 274(Suppl 1), 375 (2007) (Abstract F1–192)

    Google Scholar 

  82. Kang, J.S., Frank, J., Kang, C.H., Kajiura, H., Vikram, M., Ueda, A., Kim, S., Bahk, J.D., Triplett, B., Fujiyama, K., Lee, S.Y., von Schaewen, A., Koiwa, H.: Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 105, 5933–5938 (2008)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Paschinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschinger, K., Rendić, D. & Wilson, I.B.H. Revealing the anti-HRP epitope in Drosophila and Caenorhabditis . Glycoconj J 26, 385–395 (2009). https://doi.org/10.1007/s10719-008-9155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9155-3

Keywords

Navigation