Skip to main content

Advertisement

Log in

Pathways of the Maillard reaction under physiological conditions

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Initially investigated as a color formation process in thermally treated foods, nowadays, the relevance of the Maillard reaction in vivo is generally accepted. Many chronic and age-related diseases such as diabetes, uremia, atherosclerosis, cataractogenesis and Alzheimer’s disease are associated with Maillard derived advanced glycation endproducts (AGEs) and α-dicarbonyl compounds as their most important precursors in terms of reactivity and abundance. However, the situation in vivo is very challenging, because Maillard chemistry is paralleled by enzymatic reactions which can lead to both, increases and decreases in certain AGEs. In addition, mechanistic findings established under the harsh conditions of food processing might not be valid under physiological conditions. The present review critically discusses the relevant α-dicarbonyl compounds as central intermediates of AGE formation in vivo with a special focus on fragmentation pathways leading to formation of amide-AGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maillard L.C.: Action des acidesamines sur les sucres: formation des melanoidines par voie methodique. CR Acad. Sci. Paris. 154, 66–68 (1912)

    CAS  Google Scholar 

  2. Hellwig M., Henle T.: Baking, ageing, diabetes: a short history of the Maillard reaction. Angew. Chem. Int. Ed. Eng. 53, 10316–10329 (2014)

    Article  CAS  Google Scholar 

  3. Singh R., Barden A., Mori T., Beilin L.: Advanced glycation end-products: a review. Diabetologia. 44, 129–146 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. Beisswenger P.J.: Methylglyoxal in diabetes: link to treatment, glycaemic control and biomarkers of complications. Biochem. Soc. Trans. 42, 450–456 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Odani H., Shinzato T., Matsumoto Y., Usami J., Maeda K.: Increase in three alpha, beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 256, 89–93 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Miyazawa T., Nakagawa K., Shimasaki S., Nagai R.: Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids. 42, 1163–1170 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. Smith M.A., Taneda S., Richey P.L., Miyata S., Yan S.D., Stern D., Sayre L.M., Monnier V.M., Perry G.: Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. U. S. A. 91, 5710–5714 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Revel G., Bertrand A.: A method for the detection of carbonyl compounds in wine: Glyoxal and methylglyoxal. J. Sci. Food Agric. 61, 267–272 (1993)

    Article  Google Scholar 

  9. Severin T., Hiebl J., Popp-Ginsbach H.: Investigations relating to the maillard reaction XX. Identification of glyceraldehyd dihydroxyacetone and other hydrophilic sugar degradation products in caramel mixtures. Z. Lebensm. Unters. Forsch. 178, 284–287 (1984)

    Article  CAS  Google Scholar 

  10. Wells-Knecht K.J., Zyzak D.V., Litchfield J.E., Thorpe S.R., Baynes J.W.: Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 34, 3702–3709 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi T., Shibamoto T.: Analysis of methyl glyoxal in foods and beverages. J. Agric. Food Chem. 33, 1090–1093 (1985)

    Article  CAS  Google Scholar 

  12. McLellan A.C., Phillips S.A., Thornalley P.J.: The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal. Biochem. 206, 17–23 (1992)

    Article  CAS  PubMed  Google Scholar 

  13. Hirsch J., Petrakova E., Feather M.S.: The reaction of some dicarbonyl sugars with aminoguanidine. Carbohydr. Res. 232, 125–130 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. Glomb M.A., Tschirnich R.: Detection of alpha-dicarbonyl compounds in Maillard reaction systems and in vivo. J. Agric. Food Chem. 49, 5543–5550 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Henning C., Liehr K., Girndt M., Ulrich C., Glomb M.A.: Extending the spectrum of α-dicarbonyl compounds in vivo. J. Biol. Chem. 289, 28676–28688 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mittelmaier S., Fünfrocken M., Fenn D., Fichert T., Pischetsrieder M.: Identification and quantification of the glucose degradation product glucosone in peritoneal dialysis fluids by HPLC/DAD/MSMS. J. Chromatogr. B. 878, 877–882 (2010)

    Article  CAS  Google Scholar 

  17. Chaplen F.W.R., Fahl W.E., Cameron D.C.: Detection of methylglyoxal as a degradation product of DNA and nucleic acid components treated with strong acid. Anal. Biochem. 236, 262–269 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Amadori, M.: The product of the condensation of glucose and p-phenetidine. Atli Accad. Lincei [8] 9, 68–73 (1929)

  19. Heyns K., Noack H.: Die Umsetzung von D-Fructose mit L-Lysin und L-Arginin und deren Beziehung zu nichtenzymatischen Bräunungsreaktionen. Chem. Ber. 95, 720–727 (1962)

    Article  CAS  Google Scholar 

  20. Shin D.B., Feather M.S.: The degradation of L-ascorbic acid in neutral solutions containing oxygen. J. Carbohydr. Chem. 9, 461–469 (1990)

    Article  CAS  Google Scholar 

  21. Beck J., Ledl F., Severin T.: Formation of glucosyl-deoxyosones from Amadori compounds of maltose. Z. Lebensm. Unters. Forsch. 188, 118–121 (1989)

    Article  CAS  Google Scholar 

  22. Morita N., Inoue K., Takagi M.: Quinoxalines derived from disaccharides with O-phenylenediamine under weakly acidic Reflux conditions. Agric. Biol. Chem. 49, 3279–3289 (1985)

    CAS  Google Scholar 

  23. Biemel K.M., Conrad J., Lederer M.O.: Unexpected carbonyl mobility in aminoketoses: the key to major Maillard crosslinks. Angew. Chem. Int. Ed. 41, 801–804 (2002)

    Article  CAS  Google Scholar 

  24. Reihl O., Rothenbacher T.M., Lederer M.O., Schwack W.: Carbohydrate carbonyl mobility—the key process in the formation of α-dicarbonyl intermediates. Carbohydr. Res. 339, 1609–1618 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Gobert J., Glomb M.A.: Degradation of glucose: reinvestigation of reactive α-dicarbonyl compounds†. J. Agric. Food Chem. 57, 8591–8597 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Kawakishi S., Tsunehiro J., Uchida K.: Autoxidative degradation of Amadori compounds in the presence of copper ion. Carbohydr. Res. 211, 167–171 (1991)

    Article  CAS  Google Scholar 

  27. Winkler B.: Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid. Biochim. Biophys. Acta Gen. Subj. 1117, 287–290 (1992)

    Article  CAS  Google Scholar 

  28. Bode A.M., Yavarow C.R., Fry D.A., Vargas T.: Enzymatic basis for altered ascorbic acid and dehydroascorbic acid levels in diabetes. Biochem. Biophys. Res. Commun. 191, 1347–1353 (1993)

    Article  CAS  PubMed  Google Scholar 

  29. Arrigoni O., Tullio D., C. M.: Ascorbic acid: much more than just an antioxidant. Biochim. Biophys. Acta Gen. Subj. 1569, 1–9 (2002)

    Article  CAS  Google Scholar 

  30. Rabbani N., Thornalley P.J.: Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 42, 1133–1142 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Fu M.-X., Requena J.R., Jenkins A.J., Lyons T.J., Baynes J.W., Thorpe S.R.: The advanced glycation end product, N-(carboxymethyl) lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 271, 9982–9986 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Thornalley P.J.: Glutathione-dependent detoxification of α-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem. Biol. Interact. 111, 137–151 (1998)

    Article  PubMed  Google Scholar 

  33. Biemel K.M., Reihl O., Conrad J., Lederer M.O.: Formation Pathways for Lysine-Arginine Cross-links Derived from Hexoses and Pentoses by Maillard Processes UNRAVELING THE STRUCTURE OF A PENTOSIDINE PRECURSOR. J. Biol. Chem. 276, 23405–23412 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Lederer M.O., Bühler H.P.: Cross-linking of proteins by Maillard processes—characterization and detection of a lysine-arginine cross-link derived from D-glucose. Bioorg. Med. Chem. 7, 1081–1088 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Nagaraj R.H., Monnier V.M.: Isolation and characterization of a blue fluorophore from human eye lens crystallins: in vitro formation from Maillard reaction with ascorbate and ribose. Biochim. Biophys. Acta Gen. Subj. 1116, 34–42 (1992)

    Article  CAS  Google Scholar 

  36. Nakamura K., Nakazawa Y., Ienaga K.: Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Biochem. Biophys. Res. Commun. 232, 227–230 (1997)

    Article  CAS  PubMed  Google Scholar 

  37. Tessier F., Obrenovich M., Monnier V.M.: Structure and mechanism of formation of human lens fluorophore LM-1 relationship to vesperlysine A and the advanced Maillard reaction in aging, diabetes, and cataractogenesis. J. Biol. Chem. 274, 20796–20804 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. Nakayama T., Hayase F., Kato H.: Formation of ε-(2-Formyl-5-hydroxy-methyl-pyrrol-1-yl)-l-norleucine in the Maillard Reaction between d-Glucose and l-Lysine. Agric. Biol. Chem. 44, 1201–1202 (1980)

    CAS  Google Scholar 

  39. Miller R., Olsson K.: Synthesis of (+−)-2-Formyl-5-(hydroximethyl) pyrrol-1-norleucine. A biologically active Maillard reaction product derived from glucose and lysine. Acta Chem. Scand. Ser. 39, 717–723 (1985)

    Article  Google Scholar 

  40. Hayase F., Nagaraj R.H., Miyata S., Njoroge F.G., Monnier V.M.: Aging of proteins: immunological detection of a glucose-derived pyrrole formed during maillard reaction in vivo. J. Biol. Chem. 264, 3758–3764 (1989)

    CAS  PubMed  Google Scholar 

  41. Njoroge F.G., Sayre L.M., Monnier V.M.: Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr. Res. 167, 211–220 (1987)

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed M.U., Thorpe S.R., Baynes J.W.: Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261, 4889–4894 (1986)

    CAS  PubMed  Google Scholar 

  43. Glomb M.A., Monnier V.M.: Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem. 270, 10017–10026 (1995)

    Article  CAS  PubMed  Google Scholar 

  44. Glomb M.A., Pfahler C.: Amides are novel protein modifications formed by physiological sugars. J. Biol. Chem. 276, 41638–41647 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Wells-Knecht K.J., Brinkmann E., Baynes J.W.: Characterization of an imidazolium salt formed from glyoxal and N. alpha.-hippuryllysine: A model for maillard reaction crosslinks in proteins. J. Org. Chem. 60, 6246–6247 (1995)

    Article  CAS  Google Scholar 

  46. Brinkmann E., Wells-Knecht K.J., Thorpe S.R., Baynes J.W.: Characterization of an imidazolium compound formed by reaction of methylglyoxal and N α-hippuryllysine. J. Chem. Soc. Perkin Trans. 1, 2817–2818 (1995)

    Article  Google Scholar 

  47. Nagaraj R.H., Shipanova I.N., Faust F.M.: Protein cross-linking by the Maillard reaction isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem. 271, 19338–19345 (1996)

    Article  CAS  PubMed  Google Scholar 

  48. Skovsted I.C., Christensen M., Breinholt J., Mortensen S.B.: Characterisation of a novel AGE-compound derived from lysine and 3-deoxyglucosone. Cell. Mol. Biol. (Noisy-le-Grand). 44, 1159–1163 (1998)

    CAS  Google Scholar 

  49. Glomb M.A., Lang G.: Isolation and characterization of glyoxal-arginine modifications. J. Agric. Food Chem. 49, 1493–1501 (2001)

    Article  CAS  PubMed  Google Scholar 

  50. Alt N., Schieberle P.: Model studies on the influence of high hydrostatic pressure on the formation of glycated arginine modifications at elevated temperatures. J. Agric. Food Chem. 53, 5789–5797 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. Alt N., Schieberle P.: Identification of N7-(1-Carboxyethyl)-Arginine, a Novel Posttranslational Protein Modification of Arginine Formed at High Hydrostatic Pressure. Ann. N. Y. Acad. Sci. 1043, 55–58 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Klöpfer A., Spanneberg R., Glomb M.A.: Formation of arginine modifications in a model system of N α-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal. J. Agric. Food Chem. 59, 394–401 (2010)

    Article  PubMed  CAS  Google Scholar 

  53. Ahmed N., Argirov O.K., Minhas H.S., Cordeiro C.A.A., Thornalley P.J.: Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to N∊-carboxymethyl-lysine-and N∊-(1-carboxyethyl) lysine-modified albumin. Biochem. J. 364, 1–14 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thornalley P.J., Battah S., Ahmed N., Karachalias N., Agalou S., Babaei-Jadidi R., Dawnay A.: Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581–592 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shipanova I.N., Glomb M.A., Nagaraj R.H.: Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344, 29–36 (1997)

    Article  CAS  PubMed  Google Scholar 

  56. Oya T., Hattori N., Mizuno Y., Miyata S., Maeda S., Osawa T., Uchida K.: Methylglyoxal Modification of Protein: CHEMICAL AND IMMUNOCHEMICAL CHARACTERIZATION OF METHYLGLYOXAL-ARGININE ADDUCTS. J. Biol. Chem. 274, 18492–18502 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. Weenen H.: Reactive intermediates and carbohydrate fragmentation in Maillard chemistry. Food Chem. 62, 393–401 (1998)

    Article  CAS  Google Scholar 

  58. Tressl, R., Rewicki, D.: Heat Generated Flavors and Precursors. In: Teranishi, R., Wick, E.L., Hornstein, I. (eds.) Flavor Chemistry: Thirty Years of Progress, pp. 305–25. Springer US, Boston, MA (1999)

  59. Kim M.-O., Baltes W.: On the role of 2, 3-dihydro-3, 5-dihydroxy-6-methyl-4 (H)-pyran-4-one in the Maillard reaction. J. Agric. Food Chem. 44, 282–289 (1996)

    Article  CAS  Google Scholar 

  60. Davidek T., Robert F., Devaud S., Vera F.A., Blank I.: Sugar fragmentation in the Maillard reaction cascade: Formation of short-chain carboxylic acids by a new oxidative α-dicarbonyl cleavage pathway. J. Agric. Food Chem. 54, 6677–6684 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. Smuda M., Voigt M., Glomb M.A.: Degradation of 1-deoxy-D-erythro-hexo-2, 3-diulose in the presence of lysine leads to formation of carboxylic acid amides. J. Agric. Food Chem. 58, 6458–6464 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Hodge J.E.: Dehydrated foods, chemistry of browning reactions in model systems. J. Agric. Food Chem. 1, 928–943 (1953)

    Article  CAS  Google Scholar 

  63. Thornalley P.J., Langborg A., Minhas H.S.: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109–116 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yaylayan V.A., Keyhani A.: Origin of carbohydrate degradation products in L-alanine/D-[13C] glucose model systems. J. Agric. Food Chem. 48, 2415–2419 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. Smuda M., Glomb M.A.: Fragmentation pathways during Maillard-induced carbohydrate degradation. J. Agric. Food Chem. 61, 10198–10208 (2013)

    Article  CAS  PubMed  Google Scholar 

  66. Ginz M., Balzer H.H., Bradbury A.G.W., Maier H.G.: Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. Eur. Food Res. Technol. 211, 404–410 (2000)

    Article  CAS  Google Scholar 

  67. Brands C.M.J., van Boekel M.A.J.S.: Reactions of monosaccharides during heating of sugar-casein systems: building of a reaction network model. J. Agric. Food Chem. 49, 4667–4675 (2001)

    Article  CAS  PubMed  Google Scholar 

  68. Martins S.I., Marcelis A.T.M., van Boekel M.A.J.S.: Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I—Reaction mechanism. Carbohydr. Res. 338, 1651–1663 (2003)

    Article  CAS  PubMed  Google Scholar 

  69. Davídek T., Devaud S., Robert F., Blank I.: Sugar fragmentation in the Maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic β-dicarbonyl cleavage mechanism. J. Agric. Food Chem. 54, 6667–6676 (2006)

    Article  PubMed  CAS  Google Scholar 

  70. Smuda M., Glomb M.A.: Maillard degradation pathways of vitamin C. Angew. Chem. Int. Ed. Engl. 52, 4887–4891 (2013)

    Article  CAS  PubMed  Google Scholar 

  71. Hayami J.: Studies on the chemical decomposition of simple sugars. XII. Mechanism of the acetol formation. Bull. Chem. Soc. Jpn. 34, 927–932 (1961)

    Article  CAS  Google Scholar 

  72. Mills F.D., Weisleder D., Hodge J.E.: 2, 3-Dihydro-3, 5-dihydroxy-6-methyl-4H-pyran-4-one, a novel nonenzymatic browning product. Tetrahedron Lett. 11, 1243–1246 (1970)

    Article  Google Scholar 

  73. Davidek T., Devaud S., Robert F., Blank I.: The effect of reaction conditions on the origin and yields of acetic acid generated by the Maillard reaction. Ann. N. Y. Acad. Sci. 1043, 73–79 (2005)

    Article  CAS  PubMed  Google Scholar 

  74. Voigt M., Glomb M.A.: Reactivity of 1-Deoxy-D-erythro-hexo-2, 3-diulose: a key intermediate in the Maillard chemistry of hexoses. J. Agric. Food Chem. 57, 4765–4770 (2009)

    Article  CAS  PubMed  Google Scholar 

  75. Voigt M., Smuda M., Pfahler C., Glomb M.A.: Oxygen-dependent fragmentation reactions during the degradation of 1-deoxy-d-erythro-hexo-2, 3-diulose. J. Agric. Food Chem. 58, 5685–5691 (2010)

    Article  CAS  PubMed  Google Scholar 

  76. Henning C., Smuda M., Girndt M., Ulrich C., Glomb M.A.: Molecular basis of maillard amide-advanced glycation end product (AGE) formation in vivo. J. Biol. Chem. 286, 44350–44356 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smuda M., Henning C., Raghavan C.T., Johar K., Vasavada A.R., Nagaraj R.H., Glomb M.A.: Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract. Biochemistry. 54, 2500–2507 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smuda, M., Glomb, M.A.: Maillard Degradation of Vitamin C: β-Dicarbonyl Cleavage Leads to Novel Amide-AGEs. 11th International Symposium on the Maillard Reaction Poster Presentation S1.12 (2012)

  79. Mirza M.A., Kandhro A.J., Memon S.Q., Khuhawar M.Y., Arain R.: Determination of glyoxal and methylglyoxal in the serum of diabetic patients by MEKC using stilbenediamine as derivatizing reagent. Electrophoresis. 28, 3940–3947 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. Lapolla A., Flamini R., Lupo A., Arico N.C., Rugiu C., Reitano R., Tubaro M., Ragazzi E., Seraglia R., Traldi P.: Evaluation of glyoxal and methylglyoxal levels in uremic patients under peritoneal dialysis. Ann. N. Y. Acad. Sci. 1043, 217–224 (2005)

    Article  CAS  PubMed  Google Scholar 

  81. Lapolla A., Reitano R., Seraglia R., Sartore G., Ragazzi E., Traldi P.: Evaluation of advanced glycation end products and carbonyl compounds in patients with different conditions of oxidative stress. Mol. Nutr. Food Res. 49, 685–690 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. Knecht K.J., Feather M.S., Baynes J.W.: Detection of 3-deoxyfructose and 3-deoxyglucosone in human urine and plasma: evidence for intermediate stages of the Maillard reaction in vivo. Arch. Biochem. Biophys. 294, 130–137 (1992)

    Article  CAS  PubMed  Google Scholar 

  83. Nakayama K., Nakayama M., Iwabuchi M., Terawaki H., Sato T., Kohno M., Ito S.: Plasma α-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 28, 871–878 (2008)

    Article  CAS  PubMed  Google Scholar 

  84. Lopez-Anaya A., Mayersohn M.: Ascorbic and dehydroascorbic acids simultaneously quantified in biological fluids by liquid chromatography with fluorescence detection, and comparison with a colorimetric assay. Clin. Chem. 33, 1874–1878 (1987)

    CAS  PubMed  Google Scholar 

  85. Haik G.M., Lo T.W.C., Thornalley P.J.: Methylglyoxal concentration and glyoxalase activities in the human lens. Exp. Eye Res. 59, 497–500 (1994)

    Article  CAS  PubMed  Google Scholar 

  86. Nemet I., Monnier V.M.: Vitamin C degradation products and pathways in the human lens. J. Biol. Chem. 286, 37128–37136 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Henle T., Walter H., Klostermeyer H.: Evaluation of the extent of the early Maillard-reaction in milk products by direct measurement of the Amadori-product lactuloselysine. Z. Lebensm. Unters. Forsch. 193, 119–122 (1991)

    Article  CAS  PubMed  Google Scholar 

  88. Ahmed N., Thornalley P.J.: Assay of early and advanced glycation adducts by enzymatic hydrolysis of proteins and HPLC of 6-aminoquinolylcarbonyl adducts. Int. Congr. Ser. 1245, 279–283 (2002)

    Article  CAS  Google Scholar 

  89. Delgado-Andrade C.: Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct. 7, 46–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  90. Thorpe S.R., Baynes J.W.: CML: a brief history. Int. Congr. Ser. 1245, 91–99 (2002)

    Article  CAS  Google Scholar 

  91. van Eupen M.G.A., Schram M.T., Colhoun H.M., Scheijen J.L.J.M., Stehouwer C.D.A., Schalkwijk C.G.: Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification. Cardiovasc. Diabetol. 12, 149 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Gopal P., Reynaert N.L., Scheijen J.L.J.M., Engelen L., Schalkwijk C.G., Franssen F.M.E., Wouters E.F.M., Rutten E.P.A.: Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. Eur. Respir. J. 43, 430–438 (2014)

    Article  CAS  PubMed  Google Scholar 

  93. Lieuw-A-Fa M.L.M., van Hinsbergh V.W.M., Teerlink T., Barto R., Twisk J., Stehouwer C.D.A., Schalkwijk C.G.: Increased levels of N -(carboxymethyl)lysine and N -(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol. Dial. Transplant. 19, 631–636 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. Ahmed N., Babaei-Jadidi R., Howell S.K., Beisswenger P.J., Thornalley P.J.: Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia. 48, 1590–1603 (2005)

    Article  CAS  PubMed  Google Scholar 

  95. Ahmed M.U., Brinkmann Frye E., Degenhardt T.P., Thorpe S.R., Baynes J.W.: N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 324(Pt 2), 565–570 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Portero-Otin M., Nagaraj R.H., Monnier V.M.: Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1247, 74–80 (1995)

    Article  Google Scholar 

  97. Miyata S., Monnier V.: Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Invest. 89, 1102–1112 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Odani H., Matsumoto Y., Shinzato T., Usami J., Maeda K.: Mass spectrometric study on the protein chemical modification of uremic patients in advanced Maillard reaction. J. Chromatogr. B Biomed. Sci. Appl. 731, 131–140 (1999)

    Article  CAS  PubMed  Google Scholar 

  99. Tamura S., Tsukahara H., Ueno M., Maeda M., Kawakami H., Sekine K., Mayumi M.: Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children, adolescents and young adults. Free Radic. Res. 40, 1198–1205 (2006)

    Article  CAS  PubMed  Google Scholar 

  100. Aso Y., Takanashi K., Sekine K., Yoshida N., Takebayashi K., Yoshihara K., Inukai T.: Dissociation between urinary pyrraline and pentosidine concentrations in diabetic patients with advanced nephropathy. J. Lab. Clin. Med. 144, 92–99 (2004)

    Article  CAS  PubMed  Google Scholar 

  101. Portero-otín M., Pamplona R., Bellmunt M.J., Bergua M., Nagaraj R.H., Prat J.: Urinary pyrraline as a biochemical marker of non-oxidative maillard reactions in vivo. Life Sci. 60, 279–287 (1996)

    Article  Google Scholar 

  102. Nagaraj R.H., Sady C.: The presence of a glucose-derived Maillard reaction product in the human lens. FEBS Lett. 382, 234–238 (1996)

    Article  CAS  PubMed  Google Scholar 

  103. Frye E.B., Degenhardt T.P., Thorpe S.R., Baynes J.W.: Role of the Maillard Reaction in Aging of Tissue Proteins: ADVANCED GLYCATION END PRODUCT-DEPENDENT INCREASE IN IMIDAZOLIUM CROSS-LINKS IN HUMAN LENS PROTEINS. J. Biol. Chem. 273, 18714–18719 (1998)

    Article  CAS  PubMed  Google Scholar 

  104. Chellan P., Nagaraj R.H.: Protein crosslinking by the Maillard reaction: dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Arch. Biochem. Biophys. 368, 98–104 (1999)

    Article  CAS  PubMed  Google Scholar 

  105. Odani H., Iijima K., Nakata M., Miyata S., Kusunoki H., Yasuda Y., Hiki Y., Irie S., Maeda K., Fujimoto D.: Identification of N(omega)-carboxymethylarginine, a new advanced glycation endproduct in serum proteins of diabetic patients: possibility of a new marker of aging and diabetes. Biochem. Biophys. Res. Commun. 285, 1232–1236 (2001)

    Article  CAS  PubMed  Google Scholar 

  106. Ahmed N., Thornalley P.J., Dawczynski J., Franke S., Strobel J., Stein G., Haik G.M.: Methylglyoxal-Derived Hydroimidazolone Advanced Glycation End-Products of Human Lens Proteins. Invest. Ophthalmol. Vis. Sci. 44, 5287 (2003)

    Article  PubMed  Google Scholar 

  107. Biemel K.M., Friedl D.A., Lederer M.O.: Identification and quantification of major Maillard cross-links in human serum albumin and lens protein evidence for glucosepane as the dominant compound. J. Biol. Chem. 277, 24907–24915 (2002)

    Article  CAS  PubMed  Google Scholar 

  108. Monnier V.M., Sell D.R., Strauch C., Sun W., Lachin J.M., Cleary P.A., Genuth S.: DCCT Research Group: The association between skin collagen glucosepane and past progression of microvascular and neuropathic complications in type 1 diabetes. J. Diabetes Complicat. 27, 141–149 (2013)

    Article  PubMed  Google Scholar 

  109. Sanaka T., Funaki T., Tanaka T., Hoshi S., Niwayama J., Taitoh T., Nishimura H., Higuchi C.: Plasma pentosidine levels measured by a newly developed method using ELISA in patients with chronic renal failure. Nephron. 91, 64–73 (2002)

    Article  CAS  PubMed  Google Scholar 

  110. Yoshihara K., Nakamura K., Kanai M., Nagayaman Y., Takahashit S., Saito N., Nagata M.: Determination of urinary and serum pentosidine and its application to elder patients. Biol. Pharm. Bull. 21, 1005–1008 (1998)

    Article  CAS  PubMed  Google Scholar 

  111. Yu Y., Thorpe S.R., Jenkins A.J., Shaw J.N., Sochaski M.A., McGee D., Aston C.E., Orchard T.J., Silvers N., Peng Y.G., McKnight J.A., Baynes J.W., Lyons T.J.: Advanced glycation end-products and methionine sulphoxide in skin collagen of patients with type 1 diabetes. Diabetologia. 49, 2488–2498 (2006)

    Article  CAS  PubMed  Google Scholar 

  112. Sell D.R., Monnier V.M.: End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J. Clin. Investig. 85, 380 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sell D.R., Lapolla A., Odetti P., Fogarty J., Monnier V.M.: Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes. 41, 1286–1292 (1992)

    Article  CAS  PubMed  Google Scholar 

  114. Nagaraj R.H., Sell D.R., Prabhakaram M., Ortwerth B.J., Monnier V.M.: High correlation between pentosidine protein crosslinks and pigmentation implicates ascorbate oxidation in human lens senescence and cataractogenesis. Proc. Natl. Acad. Sci. 88, 10257–10261 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sell D.R., Monnier V.M.: Isolation, purification and partial characterization of novel fluorophores from aging human insoluble collagen-rich tissue. Connect. Tissue Res. 19, 77–92 (1989)

    Article  CAS  PubMed  Google Scholar 

  116. Sell, Monnier V.M.: Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J. Biol. Chem. 264, 21597–21602 (1989)

    CAS  PubMed  Google Scholar 

  117. Sell D.R., Nagaraj R.H., Grandhee S.K., Odetti P., Lapolla A., Fogarty J., Monnier V.M.: Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging, and uremia. Diabetes Metab. Rev. 7, 239–251 (1991)

    Article  CAS  PubMed  Google Scholar 

  118. Allfrey V.G., Faulkner R., Mirsky A.E.: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. 51, 786–794 (1964)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Levine R.L., Moskovitz J., Stadtman E.R.: Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation. IUBMB Life. 50, 301–307 (2000)

    Article  CAS  PubMed  Google Scholar 

  120. Swaim M.W., Pizzo S.V.: Methionine sulfoxide and the oxidative regulation of plasma proteinase inhibitors. J. Leukoc. Biol. 43, 365–379 (1988)

    CAS  PubMed  Google Scholar 

  121. Leeuwenburgh C., Hansen P.A., Holloszy J.O., Heinecke J.W.: Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R128–R135 (1999)

    CAS  Google Scholar 

  122. Gaut J.P., Byun J., Tran H.D., Heinecke J.W.: Artifact-free quantification of free 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine in human plasma by electron capture–negative chemical ionization gas chromatography mass spectrometry and liquid chromatography–electrospray ionization tandem mass spectrometry. Anal. Biochem. 300, 252–259 (2002)

    Article  CAS  PubMed  Google Scholar 

  123. Henning, C., Glomb, M.A.: Formation of glyoxal and glycolaldehyde in Maillard reaction systems. 9th International Symposium on the Maillard Reaction Poster Presentation F12 (2007)

  124. Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., Strihou D., Van Ypersele C.: Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51, 1170–1181 (1997)

    Article  CAS  PubMed  Google Scholar 

  125. Miyata T., Maeda K., Kurokawa K., Strihou D., Van Ypersele C.: Oxidation conspires with glycation to generate noxious advanced glycation end products in renal failure. Nephrol. Dial. Transplant. 12, 255–258 (1997)

    Article  CAS  PubMed  Google Scholar 

  126. Miyata T., Fu M.-X., Kurokawa K., Van Ypersele De Strihou C., Thorpe S.R., Baynes J.W.: Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int. 54, 1290–1295 (1998)

    Article  CAS  PubMed  Google Scholar 

  127. Canestrari F., Galli F., Giorgini A., Albertini M.C., Galiotta P., Pascucci M., Bossu M.: Erythrocyte redox state in uremic anemia: Effects of hemodialysis and relevance of glutathione metabolism. Acta Haematol. 91, 187–193 (1994)

    Article  CAS  PubMed  Google Scholar 

  128. Dasgupta A., Hussain S., Ahmad S.: Increased lipid peroxidation in patients on maintenance hemodialysis. Nephron. 60, 56–59 (1992)

    Article  CAS  PubMed  Google Scholar 

  129. Odetti P., Girabaldi S., Gurreri G., Aragno I., Dapino D., Pronzato M.A., Marinari U.M.: Protein oxidation in hemodialysis and kidney transplantation. Metabolism. 45, 1319–1322 (1996)

    Article  CAS  PubMed  Google Scholar 

  130. Roselaar S.E., Nazhat N.B., Winyard P.G., Jones P., Cunningham J., Blake D.R.: Detection of oxidants in uremic plasma by electron spin resonance spectroscopy. Kidney Int. 48, 199–206 (1995)

    Article  CAS  PubMed  Google Scholar 

  131. Witko-Sarsat V., Friedlander M., Capeillère-Blandin C., Nguyen-Khoa T., Nguyen A.T., Zingraff J., Jungers P., Descamps-Latscha B.: Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304–1313 (1996)

    Article  CAS  PubMed  Google Scholar 

  132. Kouzarides T.: Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang X.: Lysine acetylation and the bromodomain: a new partnership for signaling. BioEssays. 26, 1076–1087 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Glomb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, C., Glomb, M.A. Pathways of the Maillard reaction under physiological conditions. Glycoconj J 33, 499–512 (2016). https://doi.org/10.1007/s10719-016-9694-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9694-y

Keywords

Navigation