Skip to main content
Log in

Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides)

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The transition from hunting and gathering to agriculture had revolutionary consequences for the development of human societies. Crops such as wheat, barley, lentil, pea and chickpea played a crucial role in the establishment of complex civilizations in south west Asia. Wild emmer wheat (Triticum dicoccoides) was one of the first cereals to be domesticated in the Fertile Crescent between c. 12,000 and c. 10,000 years ago. This step provided the key for subsequent bread wheat evolution. Wild emmer is found today in the western Fertile Crescent in Jordan, Syria and Israel, the central part of southeastern Turkey and mountain areas in eastern Iraq and western Iran. In this review, we summarize issues concerning geography and domestication of wild emmer wheat based on published molecular and archaeobotanical data and on our recent findings. We suggest that modern domestic tetraploid wheats derived from wild emmer lines from southeast Turkey. However, our understanding of emmer domestication is not complete. The “dispersed-specific” domestication model proposed for einkorn might well be appropriate also for emmer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaronsohn A (1909) Über die in Palästina und Syrien wildwachsend aufgefundenen Getreidearten. Verhandl der k.u.k. zool-bot Ges Wien 59:485–509

    Google Scholar 

  • Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. US Department of Agriculture, Washington, Bull Bur PI Industry 180, pp 1–64

  • Aaronsohn A, Schweinfurth G (1906) Die Auffindung des wilden Emmers (Triticum dicoccon) in Nordpalästina. Altneuland III 7–8:213–220

    Google Scholar 

  • Abbo S, Gopher O, Peleg Z, Saranga Y, Fahima T, Salamini F, Lev-Yadun S (2006) The ripples of “The Big (agricultural) Bang”: the spread of early wheat cultivation. Genome 49:861–863

    Article  PubMed  Google Scholar 

  • Allaby RG, Brown TA (2003) AFLP data and the origins of domesticated crops. Genome 46:448–453

    Article  CAS  PubMed  Google Scholar 

  • Allaby RG, Brown TA (2004) Reply to the comment by Salamini et al. on “AFLP data and the origins of domesticated crops”. Genome 47:621–622

    Article  CAS  Google Scholar 

  • Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986

    Article  CAS  PubMed  Google Scholar 

  • Ayal S, Ophir R, Levy AA (2005) Genomics of tetraploid wheat domestication. Wheat Inf Serv 100:185–204

    Google Scholar 

  • Bar-Yosef O (2002) The Natufian culture and the early Neolithic—social and economic trends. In: Bellwood P, Renfrew C (eds) Examining the farming/language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 113–126

    Google Scholar 

  • Blumler MA (1998) Introgression of durum into wild emmer and the agricultural origin question. In: Damania AB, Valkoun, J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication, ICARDA, Aleppo, Syria, ICARDA, IPGRI, FAO and UC/GRCP, pp 252–268

  • Braadbaart F (2008) Carbonisation and morphological changes in modern dehusked and husked Triticum dicoccum and Triticum aestivum grains. Veg Hist Archaeobot 17:155–166

    Article  Google Scholar 

  • Caballero L, Bancel E, Debiton C, Branlard G (2008) Granule-bound starch synthase (GBSS) diversity of ancient wheat and related species. Plant Breed 127:548–553

    Article  CAS  Google Scholar 

  • Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, Princeton

    Google Scholar 

  • Charles M (2007) East of eden? A consideration of Neolithic crop spectra in the eastern Fertile Crescent and beyond. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, California, pp 53–74

    Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Leningrad, St. Petersburg, 346 pp

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the AegilopsTriticum alliance. Genetics 171:323–332

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 67:657–670

    Article  Google Scholar 

  • Edwards PC, Meadows J, Sayej G, Westaway M (2004) From the PPNA to the PPNB: new views from the southern Levant after excavations at Zahrat Adh-dhra’ 2 in Jordan. Paléorient 30(2):21–60

    Article  Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51:616–627

    Article  CAS  PubMed  Google Scholar 

  • Fares C, Codianni P, Nigro F, Platani C, Scazzina F, Pellegrini N (2008) Processing and cooking effects on chemical, nutritional and functional properties of pasta obtained from selected emmer genotypes. J Sci Food Agric 88:2435–2444

    Article  CAS  Google Scholar 

  • Feldman M, Kislev EM (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci 55:207–221

    Article  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Ann Bot 100:903–924

    Article  PubMed  Google Scholar 

  • Gebel HG (2004) There was no centre: the polycentric evolution of the Near Eastern Neolithic. Neolithics 1(04):28–32

    Google Scholar 

  • Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096

    Article  PubMed  Google Scholar 

  • Gökgöl M (1955) Bugdaylarin Tansif Anahtari. Ziraat Vekaleti, Neşriyet ve Haberleşme Müdürlüğü, no. 716, Istanbul, Turkey

  • Gopher A, Abbo S, Lev-Yadun S (2001) The “when”, the “where” and the “why” of the Neolithic revolution in the Levant. Documenta Praehist 28:49–62

    Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Kulturpfl 32:11–34

    Article  Google Scholar 

  • Hammer K, Filatenko AA, Al-Khanjari S, Al-Maskri AY, Buerkert A (2004) Emmer (Triticum dicoccon Schrank) in Oman. Genet Resour Crop Evol 51:111–113

    Article  Google Scholar 

  • Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy, Inc., Madison

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagana R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hillman GC (2000) The plant food economy of Abu Hureyra 1 and 2: Abu Hureyra 1: the Epipaleolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates: from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp 327–398

    Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–520

    Article  Google Scholar 

  • Hovsepyan R, Willcox G (2008) The earliest finds of cultivated plants in Armenia: evidence from charred remains and crop processing residues in pise from the Neolithic settlements of Aratashen and Aknashen. Veg Hist Archaeobot 17(1):63–71

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jacomet S (2007) Neolithic plant economies in the northern Alpine foreland from 5500 to 3500 cal BC. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, California, pp 221–258

    Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Google Scholar 

  • Jones MK (2004) Between fertile crescents: minor grain crops and agricultural origins. In: Jones MK (ed) Traces of ancestry: studies in honour of Colin Renfrew. McDonald Institute for Archaeological Research, Cambridge, pp 127–135

    Google Scholar 

  • Joppa LR, Nevo E, Beiles A (1995) Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor Appl Genet 91:713–719

    Article  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  Google Scholar 

  • Kawahara T, Nevo E (1996) Screening of spontaneous major translocations in Israeli populations of Triticum dicoccoides Koern. Wheat Inf Serv 83:28–30

    Google Scholar 

  • Kawahara T, Nevo E, Beiles A (1993) Frequencies of translocations in Israel populations of Triticum dicoccoides Körn. Abstracts of the XVth International Botanical Congress, Yokohama

  • Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics 276:230–241

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007a) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007b) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the fertile crescent. In: Feuillet C, Muehlbauer G (eds) Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models, vol 7. Springer, New York, pp 81–119

    Google Scholar 

  • Kislev ME (2002) Origin of annual crops by agro-evolution. Isr J Plant Sci 50:S85–S88

    Article  Google Scholar 

  • Kislev ME, Nadel D, Carmi I (1992) Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II. Sea of Galilee. Rev Palaeobot Palynol 73:161–166

    Article  Google Scholar 

  • Körnicke FA (1889) Wilde Stammformen unserer Kulturweizen. Niederrheiner Gesellsch. f. Natur- und Heilkunde in Bonn, Sitzungsber 46

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199

    Article  Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    Article  CAS  PubMed  Google Scholar 

  • Lichter C (ed) (2007) Die ältesten Monumente der Menschheit. Badisches Landesmuseum Karlsruhe, K. Theiss Verlag, Stuttgart

  • Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • Maan SS (1973) Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22:287–300

    Article  Google Scholar 

  • Martin W, Salamini F (2000) A meeting at the gene. Biodiversity and natural history. EMBO Rep 1:208–210

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Ishii T, Ishido T, Hirosawa S, Watatani H, Kawahara T, Nesbitt M, Belay G, Takumi S, Ogihara Y, Nakamura C (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. 10th International wheat genetics symposium, 1–6 September 2003, Paestum, Italy, pp 25–28

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294

    Article  CAS  PubMed  Google Scholar 

  • Nadel D (2002) Ohalo II: a 23,000-year-old Fisher-Hunter-Gatherer’s Camp on the Sea of Galilee. University of Haifa, Haifa

    Google Scholar 

  • Neef R (2003) Overlooking the steppe forest: preliminary report on the botanical remains from early Neolithic Göbekli Tepe (southern Turkey). Neolithics 2(03):13–15

    Google Scholar 

  • Nesbitt M, Samuel D (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 41–100

    Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution, and application in breeding. Theor Appl Genet 77:421–455

    Article  Google Scholar 

  • Nevo E, Golenberg EM, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254

    Google Scholar 

  • Nevo E, Beiles A, Gutterman Y, Storch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and vicinity. I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33:717–735

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Springer, Berlin

    Google Scholar 

  • Nishikawa K, Mizuno S, Furuta Y (1994) Identification of chromosomes involved translocations in wild emmer. Jpn J Genet 69:371–376

    Article  Google Scholar 

  • Ozbek O, Millet E, Anikster Y, Arslan O, Feldman M (2007) Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theor Appl Genet 115:19–26

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in south-east Turkey. Mol Biol Evol 19:1797–1801

    CAS  PubMed  Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 102–118

    Google Scholar 

  • Poyarkova H (1988) Morphology, geography and infraspecific taxonomics of Triticum dicoccoides Körn. A retrospective of 80 years of research. Euphytica 38:11–23

    Article  Google Scholar 

  • Poyarkova H, Gerechter-Amitai ZK, Genizi A (1991) Two variants of wild emmer (Triticum dicoccoides) native to Israel: morphology and distribution. Can J Bot 69:2772–2789

    Article  Google Scholar 

  • Rees H, Walters MR (1965) Nuclear DNA and the evolution of wheat. Heredity 20:73–82

    Article  CAS  Google Scholar 

  • Renfrew C (2002) The emerging synthesis’: the archaeogenetics of farming/language dispersals and other spread zones. In: Bellwood P, Renfrew C (eds) Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 3–16

    Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Salamini F, Heun M, Brandolini A, Özkan H, Wunder J (2004) Comment on “AFLP data and the origins of domesticated crops”. Genome 47:615–620

    Article  CAS  PubMed  Google Scholar 

  • Schiemann E (1939) Gedanken zur Genzentrentheorie Vavilovs. Naturwiss 27:377–401

    Article  Google Scholar 

  • Schmidt K (2001) Göbekli Tepe, southeastern Turkey. A preliminary report on the 1995–1999 excavations. Paléorient 26:45–54

    Article  Google Scholar 

  • Schmidt K (2006) Sie bauten die ersten Tempel. Verlag CH Beck, München

    Google Scholar 

  • Schweinfurth G (1908) Über die von A. Aaronsohn ausgeführten Nachforschungen nach dem wilden Emmer (Triticum dicoccoides Kcke). Ber Dtsch Bot Ges 26a:309–324

    Google Scholar 

  • Serpen A, Gokmen V, Karagoz A, Koksel H (2008) Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56:7285–7292

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Stordeur D (2000) New discoveries in architecture and symbolism at Jerf el Ahmar (1997–1999 Syria). Neolithics 1:1–4

    Google Scholar 

  • Szabó AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 2–40

    Google Scholar 

  • Tanaka M, Ishii H (1973) Cytogenetic evidence on the speciation of wild tetraploid wheats collected in Iraq, Turkey and Iran. Proceedings of the 4th international wheat genetics symposium, University of Missouri, pp 115–121

  • Tanno K, Willcox G (2006a) How fast was wild wheat domesticated? Science 311:1886

    Article  CAS  PubMed  Google Scholar 

  • Tanno K, Willcox G (2006b) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from north west Syria (Tell el-Kerkh, late 10th millennium BP). Veg Hist Archaeobot 15:197–204

    Article  Google Scholar 

  • Teklu Y, Hammer K (2006) Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1099–1113

    Article  Google Scholar 

  • Teklu Y, Hammer K, Röder MS (2007) Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation. Genet Resour Crop Evol 54:543–554

    Article  CAS  Google Scholar 

  • Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P, Bataillon T (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp. durum Desf. Mol Biol Evol 19:122–125

    CAS  PubMed  Google Scholar 

  • Thuillet AC, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Valkoun J, Giles J, Waines J, Konopka J (1998) Current distribution and habitat of wild wheats and barley. In: Damania A, Valkoun J, Willcox G, Qualset C (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 293–299

    Google Scholar 

  • van Zeist W, Bakker-Heeres JH (1982) Archaeobotanical studies in the Levant 1. Neolithic sites in the Damascus Basin: Aswad, Ghoraife, Ramad. Palaeohistoria 24:165–256

    Google Scholar 

  • van Zeist W, Buitenhuis H (1983) Palaeobotanical studies of Neolithic Erbaba, Turkey. Anatolica 10:47–89

    Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610

    Article  CAS  PubMed  Google Scholar 

  • Willcox G (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veg Hist Archaeobot 14:534–541

    Article  Google Scholar 

  • Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veg Hist Archaeobot 17:313–325

    Article  Google Scholar 

  • Willcox G, Buxo R, Herveux L (2009) Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. Holocene 19:151–158

    Article  Google Scholar 

  • Williams PC (1993) The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian International Grains Institute, Winnipe, pp 557–602

  • Xie W, Nevo E (2008) Wild emmer: genetics resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Article  Google Scholar 

  • Zohary D (1969) The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London

    Google Scholar 

  • Zohary D (1973) The origin of cultivated cereals and pulses in the Near East. Chromosome Today 4:307–320

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank Sigi Effgen for excellent technical assistance during the last years. We are grateful to Ofer Bar-Yosef, Klaus Schmidt, Reinder Neef, Andrea Brandolini, Karl Hammer, Ekaterina Badaeva, Fedor Konovalov, Andrey Pomortsev, Nicolay Goncharov, Jacques David, Angela Schlumbaum and Eitan Millet for discussions, to Alexander Walther for GIS based map production. We are greatly indebted to Moshe Feldman and Bill Martin and also to Sue Colledge for providing much of the data in Table 1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hakan Özkan or Benjamin Kilian.

Additional information

This article is dedicated to P. Hanelt’s 80th birthday, plant taxonomist and teacher.

Note: This is the first paper of a series of articles that came out of the international and interdisciplinary workshop “Cereal Diversity, Plant Domestication and Human History in the Fertile Crescent” held at the University of Çukurova, Adana, Turkey at the 10–15 of May 2009 organized by Hakan Özkan (Çukurova University) and Benjamin Kilian (Leibniz Institute of Plant Genetics and Crop Plant Research, IPK). Twenty-three scientists (from ten countries) from different fields of research presented and discussed their ideas. Two days of presentations were followed by a field trip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkan, H., Willcox, G., Graner, A. et al. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58, 11–53 (2011). https://doi.org/10.1007/s10722-010-9581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9581-5

Keywords

Navigation