Skip to main content
Log in

Health status of post-spawning Octopus maya (Cephalopoda: Octopodidae) females from Yucatan Peninsula, Mexico

  • CEPHALOPOD ECOLOGY AND LIFE CYCLES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the health status of Octopus maya females on different days after spawning (days 0, 10, 20, 30, and 40). A total of 25 O. maya females were examined in terms of physiological (i.e., weight loss, hepatosomatic and gonadosomatic indexes, and hemocyanin, protein, glucose, cholesterol, and acylglycerides concentrations in plasma) and immunological variables (i.e., total hemocyte count, hemagglutination, and phenoloxidase activity). We hypothesized that O. maya females should maintain their physiological integrity throughout the post-spawning period until the hatching of the offspring. Results showed that the physiological and immunological indicators measured in post-spawning females significantly changed with time. Loss of body weight over time and a decrease in the hepatosomatic and gonadosomatic indexes were observed. Hemolymph components showed variations that reflect the consumption of reserves and coincide with an increased immune process of hemagglutination and phenoloxidase activity in hemocytes. Our results demonstrate that O. maya females are adapted to maintain an adequate state of health to care for their spawn despite the long period of starvation and contribute to the identification of the mechanisms involved in maintaining the integrity of these animals during one of the most critical phases of their life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi, K., T. Hirata, T. Nishioka & M. Sakaguchi, 2003. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comparative Biochemistry and Physiology—Part B 134: 135–141.

  • Aguila, J., G. Cuzon, C. Pascual, P. M. Domingues, G. Gaxiola, A. Sánchez, T. Maldonado & C. Rosas, 2007. The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273: 641–655.

    Article  CAS  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, R. C., J. B. Wood & R. A. Byrne, 2002. Octopus senescence: the beginning of the end. Journal of Applied Animal Welfare Sciences 5: 275–283.

    Article  CAS  Google Scholar 

  • Avila-Poveda, O. H., N. Koueta, F. Benítez-Villalobos, J. Santos-Valencia & C. Rosas, 2016. Reproductive traits of Octopus maya (Cephalopoda: Octopoda) with implications forfisheries management. Molluscan Research 36: 29–44.

    Article  Google Scholar 

  • Baeza, J. & M. Fernández, 2002. Active brood care in Cancer setosus (Crustacea: Decapoda): the relationship between female behaviour, embryo oxygen consumption and the cost of brooding. Functional Ecology 16: 241–251.

    Article  Google Scholar 

  • Beuerlein, K., S. Lohr, B. Westermann, P. Ruth & R. Schipp, 2002. Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Tissue Cell 34: 390–396.

    Article  PubMed  Google Scholar 

  • Bradford, M. M., 1976. A refined and sensitive method for the quantification of microgram quantities of protein utilizing the principal protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Budelmann, B. U., R. Schipp & S. V. Boletzky, 1997. Cephalopoda: Microscopic Anatomy of Invertebrates. Wiley-Liss, New York.

    Google Scholar 

  • Caamal-Monsreal, C., M. Mascaró, P. Gallardo, S. Rodríguez, E. Noreña-Barroso, P. Domingues & C. Rosas, 2015. Effects of maternal diet on reproductive performance of O. maya and its consequences on biochemical characteristics of the yolk, morphology of embryos and hatchling quality. Aquaculture 441: 84–94.

    Article  CAS  Google Scholar 

  • Caamal-Monsreal, C., I. Uriarte, A. Farias, F. Díaz, A. Sánchez, A. D. Re & C. Rosas, 2016. Effects of temperature on embryo development and metabolism of O. maya. Aquaculture 451: 156–162.

    Article  Google Scholar 

  • Calow, P., 1987. Fact and theory—an overview. In Boyle, P. R. (ed.), Cephalopod life cycles. Academic Press, London: 351–365.

    Google Scholar 

  • Castellanos-Martínez, S., M. Prado-Alvarez, A. Lobo-da-Cunha, C. Azevedo & C. Gestal, 2014. Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes. Developmental & Comparative Immunology 44: 50–58.

    Article  Google Scholar 

  • Castillo, M. G., K. A. Salazar & N. R. Joffe, 2015. The immune response of cephalopods from head to foot. Fish and Shellfish Immunology 46: 145–160.

    Article  CAS  PubMed  Google Scholar 

  • Castro, B. G., J. L. Garrido & C. G. Sotelo, 1992. Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis during starvation. Marine Biology 114: 11–20.

    CAS  Google Scholar 

  • Chen, C. & S. Y. Cheng, 1993a. Hemolymph PCO2, hemocyanin, protein level and urea excretions of Penaeus monodon exposed to ambient ammonia. Aquatic Toxicology 27: 281–292.

    Article  CAS  Google Scholar 

  • Chen, C. & S. Y. Cheng, 1993b. Studies on hemocyanin and hemolymph protein levels of Penaeus japonicus based on sex, size, and moulting cycle. Comparative Biochemistry and Physiology—Part B 106: 293–296.

    Article  Google Scholar 

  • Claybrook, D. L., 1983. Nitrogen metabolism. In Mante, L. H. (ed.), The biology of Crustacea. Academic Press, New York: 163–213.

    Google Scholar 

  • Comoglio, L., G. Gaxiola, A. Roque, G. Cuzon & O. Amin, 2004. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption and ammonia excretion in juvenile white shrimp Litopenaeus vannamei. Journal of Shellfish Research 23: 243–249.

    Google Scholar 

  • Cortez, T., B. G. Castro & A. Guerra, 1995. Reproduction and condition of female Octopus mimus (Mollusca: Cephalopoda). Marine Biology 123: 505–510.

    Article  Google Scholar 

  • Cosgrove, J. A., 1993. In situ observations of nesting female Octopus dofleini (Wülker, 1910). Journal of Cephalopod Biology 2: 33–45.

    Google Scholar 

  • Cuzon, G., J. Cahu, J. F. Aldrin, J. L. Messager, G. Stéphan & M. Mével, 1980. Starvation effect on metabolism of Penaus japonicus. Proceedings of the World Mariculture Society 11: 410–423.

    Article  CAS  Google Scholar 

  • Dall, W. & D. M. Smith, 1986. Oxygen consuption and ammonia-N excretion in fed and starved tiger prawns, Penaeus esculentus Hanswell. Aquaculture 55: 23–33.

    Article  CAS  Google Scholar 

  • Destoumieux-Garzon, D., D. Saulnier, J. Garnier, C. Jouffrey, P. Bulet & E. Bachère, 2001. Crustacean immunity. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry 276: 47070–47077.

    Article  CAS  PubMed  Google Scholar 

  • Di Cosmo, A. & G. Polese, 2013. Molluscan bioactive peptide. In Kastin, A. J. (ed.), Handbook of biologically active peptides. Elsevier, Amsterdam: 276–286.

    Chapter  Google Scholar 

  • Di Cosmo, A. & G. Polese, 2016. Neuroendocrine-immune systems response to environmental stressors in the cephalopod Octopus vulgaris. Frontiers in Physiology 7: 434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, R. P., H. Parry, J. I. Spicer, T. H. Hutchinson, R. K. Pipe & S. Widdicombe, 2011. Immunological function in marine invertebrates: responses to environmental perturbation. Fish and Shellfish Immunology 30: 1209–1222.

    Article  CAS  PubMed  Google Scholar 

  • Estefanell, J., J. Socorro, F. J. Roo, H. Fernández-Palacios & M. Izquierdo, 2010. Gonad maturation in Octopus vulgaris during ongrowing, under different conditions of sex ratio. ICES Journal of Marine Science 67: 1487–1493.

    Article  Google Scholar 

  • Fiorito, G., A. Affuso, J. Basil, A. Cole, P. Girolamo, L. D’Angelo, L. Dickel, C. Gestal, F. Grasso, M. Kuba, F. Mark, D. Melillo, D. Osorio, K. Perkins, G. Ponte, N. Shashar, D. Smith, J. Smith & P. L. R. Andrews, 2015. Guidelines for the Care and Welfare of Cephalopods in Research – A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory Animals 49: 1–90.

    Article  PubMed  Google Scholar 

  • Garci, M. E., J. Hernández-Urcera, M. Gilcoto, R. Fernández-Gago, A. F. González & Á. Guerra, 2016. From brooding to hatching: new insights from a female Octopus vulgaris in the wild. Journal of the Marine Biological Association of the United Kingdom 96: 1341–1346.

    Article  Google Scholar 

  • García-Garrido, S., I. Hachero-Cruzado, D. Garrido, C. Rosas & P. Domingues, 2010. Lipid composition of the mantle and digestive gland of Octopus vulgaris juveniles (Cuvier, 1797) exposed to prolonged starvation. Aquaculture International 18: 1223–1241.

    Article  Google Scholar 

  • George-Zamora, A., T. Viana, S. Rodriguez, G. Espinoza & C. Rosas, 2011. Amino acid mobilization and growth of juvenile Octopus maya (Mollusca: Cephalopoda) under inanition and re-feeding. Aquaculture 314: 121–124.

    Article  Google Scholar 

  • Gestal, C. & S. Castellanos-Martínez, 2015. Understanding the cephalopod immune system based on functional and molecular evidence. Fish & Shellfish Immunology 46: 120–130.

    Article  CAS  Google Scholar 

  • Gueguen, Y., J. P. Cadore, D. Flament, C. Barreau-Roumiguière, A. L. Girardot, J. Garnier, A. Hoareau, E. Bachère & J. M. Escoubas, 2003. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria-challenged oyster, Crassostrea gigas. Gene 303: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Hanlon, R. T. & J. W. Forsythe, 1985. Advances in the laboratory culture of Octopuses for biomedical research. Laboratory Animal Science 35: 33–40.

    CAS  PubMed  Google Scholar 

  • Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge.

    Google Scholar 

  • Heras, H. & R. J. Pollero, 1989. Blood lipids of the small octopus Octopus tehuelchus (Mollusca, Cephalopoda) at different stage of sexual maturation. Comparative Biochemistry and Physiology 92: 571–579.

    Article  Google Scholar 

  • Hernández-García, V., J. L. Hernández-López & J. J. Castro-Hdez, 2002. On the reproduction of Octopus vulgaris off the coast of the Canary Islands. Fisheries Research 57: 197–203.

    Article  Google Scholar 

  • Hernández-López, J., T. Gollas-Galván & F. Vargas-Albores, 1996. Activation of the prophenoloxidase system of brown shrimp (Penaeus californiensis Holmes). Comparative Biochemistry and Physiology—Part C 13: 61–66.

    Google Scholar 

  • Juárez, O., C. E. Galindo, F. Díaz, A. D. Re, A. M. Sanchez-García, C. Caamal-Monsreal & C. Rosas, 2015. Is temperature conditioning Octopus maya fitness? Journal of Experimental Marine Biology and Ecology 467: 71–76.

    Article  Google Scholar 

  • Le Pabic, C., C. Safi, A. Serpentini, J. Lebel, J. Robin & N. Koueta, 2014. Prophenoloxidase system, lysozyme and protease inhibitor distribution in the common cuttlefish Sepia officinalis. Comparative Biochemistry and Physiology—Part B 172–173: 96–104.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Linares, M., S. Rodríguez, C. Caamal-Monsreal, A. Olivares, O. Zuñiga, A. Sanchez, C. Pascual, P. Gallardo & C. Rosas, 2015. Timing of digestion, absorption and assimilation of octopus species living in tropical (Octopus maya) and sub-tropical-temperate (O. mimus) ecosystems. Aquatic Biology 24: 127–140.

    Article  Google Scholar 

  • Locatello, L., G. Fiorito, L. Finos & M. B. Rasotto, 2013. Behavioural and immunological responses to an immune challenge in Octopus vulgaris. Physiology & Behavavior 122: 93–99.

    Article  CAS  Google Scholar 

  • Lópes, H. C. 2010. Caracterización estacional de la condición fisiológica de la población Silvestre del pulpo rojo Octopus maya (Voss y Solís-Ramírez, 1966) en la localidad de Sisal, Yucatán-México. Thesis, Universidad Autónoma de Guerrero, Acapulco, México.

  • Malham, S. K., C. L. Coulson & N. W. Runham, 1998. Effects of repeated sampling on the haemocytes and hemolymph of Eledone cirrhosa (Lam.). Comparative Biochemistry and Physiology—Part A 121: 431–440.

    Article  Google Scholar 

  • Malham, S. K., A. Lacoste, F. Gélébart, A. Cueff & S. A. Poulet, 2002. A first insight stress-induced neuroendocrine and immune changes in the octopus Eledone cirrhosa. Aquatic Living Resources 15: 187–192.

    Article  Google Scholar 

  • Martinez, R., P. Gallardo, C. Pascual, J. C. Navarro, A. Sánchez, C. Caamal-Monsreal & C. Rosas, 2014. Growth, survival and physiological condition of Octopus maya when fed a successful formulated diet. Aquaculture 426–427: 310–317.

    Article  Google Scholar 

  • Mather, J. A., R. C. Anderson & J. B. Wood, 2010. Octopus: The Ocean’s Intelligent Invertebrate. Timber Press, Portland, OR.

    Book  Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • Moguel, C., M. Mascaró, O. Avila-Poveda, C. Caamal-Monsreal, A. Sánchez, C. Pascual & C. Rosas, 2010. Morphological, physiological, and behavioural changes during post-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus on digestive system. Aquatic Biology 9: 35–48.

    Article  Google Scholar 

  • Moltschaniwskyj, N. A., 2004. Understanding the process of growth in cephalopods. Marine and Freshwater Research 55: 379–386.

    Article  Google Scholar 

  • O’Dor, R. K. & M. J. Wells, 1987. Energy and nutrient flow. In Boyle, P. R. (ed.), Cephalopod life cycles. Academic Press, London: 109–133.

    Google Scholar 

  • O’Dor, R. K. & M. J. Wells, 1978. Reproduction versus somatic growth: hormonal control in Octopus vulgaris. Journal of Experimental Biology 77: 529–540.

    Google Scholar 

  • Otero, J., A. González, M. P. Sieiro & A. Guerra, 2007. Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research 85: 122–129.

    Article  Google Scholar 

  • Pascual, C., L. Arena, G. Cuzon, G. Gaxiola, G. Taboada, M. Valenzuela & C. Rosas, 2004. Effect of a size-based selection program on blood metabolites and immune response of Litopenaeus vannamei juveniles fed different dietary carbohydrate levels. Aquaculture 230: 405–416.

    Article  CAS  Google Scholar 

  • Pascual, C., A. Sánchez, E. Zenteno, G. Cuzon, G. Gabriela, R. Brito, R. Gelabert, E. Hidalgo & C. Rosas, 2006. Biochemical, physiological, and immunological changes during starvation in juveniles of Litopenaeus vannamei. Aquaculture 251: 416–429.

    Article  CAS  Google Scholar 

  • Pascual, C., J. P. Huchin-Mian, N. Simoes, P. Briones-Fourzan, E. Lozano-Alvarez, A. Sanchez, J. A. Pérez-Vega, R. Simá-Alvarez, C. Rosas & R. Rodriguez-Canul, 2012. Physiological and immunological characterization of Caribbean spiny lobsters Panulirus argus naturally infected with Panulirus argus Virus 1 (PaV1). Diseases of Aquatic Organisms 100: 113–124.

    Article  Google Scholar 

  • Polese, G., C. Bertapelle & A. Di Cosmo, 2015. Role of olfaction in Octopus vulgaris reproduction. General and Comparative Endocrinology 210: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Pollero, R. J. & O. O. Iribarne, 1988. Biochemical changes during the reproductive cycle of the small Patagonian octopus, Octopus tehuelchus, D’Orb. Comparative Biochemistry and Physiology - Part B 90: 317–320.

    Article  Google Scholar 

  • Rocha, F., A. Guerra & A. Gonzáles, 2001. A review of reproductive strategies in cephalopods. Biological Reviews 76: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Domínguez, H., M. Soto-Búa, R. Iglesias-Blanco, C. Crespo-González, C. Arias-Fernández & J. García-Estévez, 2006. Preliminary study on the phagocytic ability of Octopus vulgaris Cuvier, 1797 (Mollusca: Cephalopoda) haemocytes in vitro. Aquaculture 254: 563–570.

    Article  Google Scholar 

  • Roper, C. F. E., M. J. Sweeney & C. E. Nauen, 1984. FAO Species Catalogue. 3. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species of Interest to Fisheries. In FAO Fisheries Synopsis No. 125, vol. 3. FAO, Rome.

  • Rosa, R., M. L. Nunes & C. Sousa Reis, 2002. Seasonal changes in the biochemical composition of Octopus vulgaris, Cuvier, 1797, from three areas of the Portuguese coast. Bulletin of Marine Science 71: 739–751.

    Google Scholar 

  • Rosa, R., P. R. Costa & M. L. Nunes, 2004. Effect of sexual maturation on the tissue biochemical composition of Octopus vulgaris and O. defilippi (Mollusca: Cephalopoda). Marine Biology 145: 563–574.

    Article  CAS  Google Scholar 

  • Rosa, R., P. R. Costa, N. Bandarra & A. J. P. Nunes, 2005a. Changes in tissue biochemical composition and energy reserves associated with sexual maturation in the ommastrephid squids Illex coindetii and Todaropsis eblanae. The Biological Bulletin 208: 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Rosa, R., J. Pereira & M. L. Nunes, 2005b. Biochemical composition of cephalopods with different life strategies, with special reference to a giant squid, Architeuthis sp. Marine Biology 146: 739–759.

    Article  CAS  Google Scholar 

  • Rosa, R., P. R. Costa, N. Bandarra & A. J. P. Nunes, 2005c. Changes in tissue biochemical composition and energy reserves associated with sexual maturation in the ommastrephid squids Illex coindetii and Todaropsis eblanae. The Biological Bulletin 208: 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Rosas, C., G. Cuzon, G. Taboada, C. Pascual, G. Gaxiola & A. Van Wormhoudt, 2001. Effect of dietary protein and energy levels (P/E) on growth, oxygen consumption, hemolymph and digestive gland carbohydrates, nitrogen excretion and osmotic pressure of Litopenaeus vannamei and L. setiferus juveniles (Crustacea, Decapoda; Penaeidae). Aquaculture Research 32: 1–20.

    Article  Google Scholar 

  • Rosas, C., G. Cuzon, G. Gaxiola, C. Pascual, G. Taboada, L. Arena & A. Van Wormhoudt, 2002. An energetic and conceptual model of the physiological role of dietary carbohydrates and salinity on Litopenaeus vannamei juveniles. Journal of Experimental Marine Biology and Ecology 268: 47–67.

    Article  CAS  Google Scholar 

  • Rosas, C., C. Pascual, M. Mascaró, P. Gebauer, A. Farias, K. Pascke & I. Uriarte, 2011. Applied Ecophysiology: an integrative form to know how culture environment modulates the performance of aquatic species from an energetic point of view. Aquaculture/Book 3. Intech, Rijeka: 161–194.

    Google Scholar 

  • Rosas, C., A. Valero, C. Caamal-Monsreal, I. Uriarte, A. Farias, P. Gallardo, A. Sánchez & P. Domingues, 2012. Effects of dietary protein sources on growth, survival and digestive capacity of Octopus maya juveniles (Mollusca: Cephalopoda). Aquaculture Research 44: 1029–1044.

    Article  Google Scholar 

  • Rosas, C., P. Gallardo, M. Mascaró, C. Caamal-Monsreal & C. Pascual, 2014. Octopus maya. In Iglesias, J., L. Fuentes & R. Villanueva (eds), Cephalopod culture. Springer, Dordrecht: 383–396.

    Chapter  Google Scholar 

  • Sánchez, A., C. Pascual, A. Sánchez, F. Vargas-Albores, G. Le Moullac & C. Rosas, 2001. Hemolymph metabolic variables y immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture 198: 13–28.

    Article  Google Scholar 

  • Solis, M., 1998. Aspectos biológicos del pulpo Octopus maya Voss y Solis. Contribuciones de investigación pesquera. Inst Nac de la Pesca 7: 1–38.

    Google Scholar 

  • Sritunyalucksana, K. & K. Söderhall, 2000. The proPO and clotting system in crustaceans. Aquaculture 191: 53–69.

    Article  CAS  Google Scholar 

  • Tait, R. W., 1986. Aspects physiologiques de la senescence post reproductive chez Octopus vulgaris, PhD thesis, University of Paris, Paris.

  • Tercero, J. F., C. Rosas, M. Mascaro, G. Poot, P. Domingues, E. Noreña, C. Caamal-Monsreal, C. Pascual, J. Estefanell & P. Gallardo, 2015. Effects of parental diets supplemented with different lipid sources on Octopus maya embryo and hatching quality. Aquaculture 448: 234–242.

    Article  CAS  Google Scholar 

  • Van Heukelem, W. F., 1976. Growth, bioenergetics and life-span in Octopus cyanea and Octopus maya. PhD thesis, University of Hawaii, Hawaii.

  • Vidal, E. A. G., R. Villanueva, J. P. Andrade, I. G. Gleadall, J. Iglesias, N. Koueta, C. Rosas, S. Segawa, B. Grasse, R. M. Franco-Santos, C. B. Albertin, C. Caamal-Monsreal, M. E. Chimal, E. Edsinger-Gonzales, P. Gallardo, C. Le Pabic, C. Pascual, K. Roumbedakis & J. Wood, 2014. Cephalopod culture: current status of main biological models and research priorities. In Vidal, E. A. G. (ed.). Advances in Marine Biology. Advances in Cephalopod Science: Biology, Ecology, Cultivation and Fisheries. Elsevier, Amsterdam: 1–98.

  • Wodinsky, J., 1977. Hormonal inhibition of feeding and death in octopus-control by optic gland secretion. Science 198: 948–951.

    Article  CAS  PubMed  Google Scholar 

  • Zamora, C. M. & P. A. Olivares, 2004. Variaciones bioquímicas e histológicas asociadas al evento reproductivo de la hembra de Octopus mimus (Mollusca: Cephalopoda). International Journal of Morphology 22: 207–216.

    Article  Google Scholar 

Download references

Acknowledgements

We thanks specially to José Fernando Tercero, Natali Casanova, Viridiana Gómez, Claudia Caamal-Monsreal, Ariadna Sánchez, and our colleagues from Universidad Nacional Autónoma de México (UNAM) for their collaboration in many different aspects of this work. We appreciate the financial support from Coordination for the Improvement of Higher Education Personnel (CAPES) for PhD (Brazil) and PhD Sandwich scholarship (6419/2014-03) (Mexico) to K. Roumbedakis, and CNPq (National Council of Scientific and Technological Development—305869/2014-0) for research grant to M.L. Martins. Thanks are also given to PASPA-UNAM through a scholarship program to C. Pascual for sabbatical stay at the ULPGC de Gran Canaria, Spain. This research was partially financed by the projects CAPES Ciências do Mar 43/2013, and PAPIIT IT201117, IN223416  and IN219116 from the DGAPA-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Pascual.

Additional information

Guest editors: Erica A. G. Vidal, Ian G. Gleadall & Natalie Moltschaniswskyi / Advances in Cephalopod Ecology and Life Cycles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roumbedakis, K., Mascaró, M., Martins, M.L. et al. Health status of post-spawning Octopus maya (Cephalopoda: Octopodidae) females from Yucatan Peninsula, Mexico. Hydrobiologia 808, 23–34 (2018). https://doi.org/10.1007/s10750-017-3340-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3340-y

Keywords

Navigation