Skip to main content

Advertisement

Log in

Protease-Activated Receptor 4: A Critical Participator in Inflammatory Response

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Protease-activated receptors (PARs) are G protein-coupled receptors of which four members PAR1, PAR2, PAR3, and PAR4 have been identified, characterized by a typical mechanism of activation involving various related proteases. The amino-terminal sequence of PARs is cleaved by a broad array of proteases, leading to specific proteolytic cleavage which forms endogenous tethered ligands to induce agonist-biased PAR activation. The biological effect of PARs activated by coagulation proteases to regulate hemostasis and thrombosis plays an enormous role in the cardiovascular system, while PAR4 can also be activated by trypsin, cathepsin G, the activated factor X of the coagulation cascade, and trypsin IV. Irrespective of its role in thrombin-induced platelet aggregation, PAR4 activation is believed to be involved in inflammatory lesions, as show by investigations that have unmasked the effects of PAR4 on neutrophil recruitment, the regulation of edema, and plasma extravasation. This review summarizes the roles of PAR4 in coagulation and other extracellular protease pathways, which activate PAR4 to participate in normal regulation and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vu, T.-K.H., D.T. Hung, V.I. Wheaton, and S.R. Coughlin. 1991. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64: 1057–1068.

    CAS  PubMed  Google Scholar 

  2. Hollenberg, M.D., M. Saifeddine, B. Al-Ani, and Y. Gui. 1999. Proteinase-activated receptor 4 (PAR4): Action of PAR4-activating peptides in vascular and gastric tissue and lack of cross-reactivity with PAR1 and PAR2. Canadian Journal of Physiology and Pharmacology 77: 458–464.

    CAS  PubMed  Google Scholar 

  3. Coughlin, S.R. 2000. Thrombin signalling and protease-activated receptors. Nature 407: 258–264.

    CAS  PubMed  Google Scholar 

  4. Steinhoff, M., J. Buddenkotte, V. Shpacovitch, A. Rattenholl, C. Moormann, N. Vergnolle, T.A. Luger, and M.D. Hollenberg. 2005. Proteinase-activated receptors: Transducers of proteinase-mediated signaling in inflammation and immune response. Endocrine Reviews 26: 1–43.

    CAS  PubMed  Google Scholar 

  5. Ramachandran, R., and M. Hollenberg. 2008. Proteinases and signalling: Pathophysiological and therapeutic implications via PARs and more. British Journal of Pharmacology 153: S263–S282.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Macfarlane, S.R., M.J. Seatter, T. Kanke, G.D. Hunter, and R. Plevin. 2001. Proteinase-activated receptors. Pharmacological Reviews 53: 245–282.

    CAS  PubMed  Google Scholar 

  7. Ossovskaya, V.S., and N.W. Bunnett. 2004. Protease-activated receptors: Contribution to physiology and disease. Physiological Reviews 84: 579–621.

    CAS  PubMed  Google Scholar 

  8. Kahn, M.L., Y.-W. Zheng, W. Huang, V. Bigornia, D. Zeng, S. Moff, R.V. Farese, C. Tam, and S.R. Coughlin. 1998. A dual thrombin receptor system for platelet activation. Nature 394: 690–694.

    CAS  PubMed  Google Scholar 

  9. Kahn, M.L., M. Nakanishi-Matsui, M.J. Shapiro, H. Ishihara, and S.R. Coughlin. 1999. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. Journal of Clinical Investigation 103: 879–887.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Nakanishi-Matsui, M., Y.-W. Zheng, D.J. Sulciner, E.J. Weiss, M.J. Ludeman, and S.R. Coughlin. 2000. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609–613.

    CAS  PubMed  Google Scholar 

  11. McLaughlin, J.N., M.M. Patterson, and A.B. Malik. 2007. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proceedings of the National Academy of Sciences 104: 5662–5667.

    CAS  Google Scholar 

  12. Riewald, M., R.J. Petrovan, A. Donner, B.M. Mueller, and W. Ruf. 2002. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880–1882.

    CAS  PubMed  Google Scholar 

  13. Riewald, M., V.V. Kravchenko, R.J. Petrovan, P.J. O’Brien, L.F. Brass, R.J. Ulevitch, and W. Ruf. 2001. Gene induction by coagulation factor Xa is mediated by activation of protease-activated receptor 1. Blood 97: 3109–3116.

    CAS  PubMed  Google Scholar 

  14. Boire, A., L. Covic, A. Agarwal, S. Jacques, S. Sherifi, and A. Kuliopulos. 2005. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313.

    CAS  PubMed  Google Scholar 

  15. Lourbakos, A., Y. Yuan, A.L. Jenkins, J. Travis, P. Andrade-Gordon, R. Santulli, J. Potempa, and R.N. Pike. 2001. Activation of protease-activated receptors by gingipains fromPorphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97: 3790–3797.

    CAS  PubMed  Google Scholar 

  16. Cocks, T.M., and J.D. Moffatt. 2000. Protease-activated receptors: Sentries for inflammation? Trends in Pharmacological Sciences 21: 103–108.

    CAS  PubMed  Google Scholar 

  17. Sambrano, G.R., E.J. Weiss, Y.-W. Zheng, W. Huang, and S.R. Coughlin. 2001. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413: 74–78.

    CAS  PubMed  Google Scholar 

  18. Asfaha, S., N. Cenac, S. Houle, C. Altier, M. Papez, C. Nguyen, M. Steinhoff, K. Chapman, G. Zamponi, and N. Vergnolle. 2007. Protease‐activated receptor‐4: a novel mechanism of inflammatory pain modulation. British Journal of Pharmacology 150: 176–185.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Vergnolle, N., C.K. Derian, M.R. D’Andrea, M. Steinhoff, and P. Andrade-Gordon. 2002. Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. The Journal of Immunology 169: 1467–1473.

    CAS  PubMed  Google Scholar 

  20. McDougall, J.J., C. Zhang, L. Cellars, E. Joubert, C.M. Dixon, and N. Vergnolle. 2009. Triggering of proteinase‐activated receptor 4 leads to joint pain and inflammation in mice. Arthritis and Rheumatism 60: 728–737.

    CAS  PubMed  Google Scholar 

  21. Kawabata, A., R. Kuroda, N. Kuroki, H. Nishikawa, and K. Kawai. 2000. Dual modulation by thrombin of the motility of rat oesophageal muscularis mucosae via two distinct protease‐activated receptors (PARs): a novel role for PAR‐4 as opposed to PAR‐1. British Journal of Pharmacology 131: 578–584.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bretschneider, E., R. Kaufmann, M. Braun, G. Nowak, E. Glusa, and K. Schrör. 2001. Evidence for functionally active protease‐activated receptor‐4 (PAR‐4) in human vascular smooth muscle cells. British Journal of Pharmacology 132: 1441–1446.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kataoka, H., J.R. Hamilton, D.D. McKemy, E. Camerer, Y.-W. Zheng, A. Cheng, C. Griffin, and S.R. Coughlin. 2003. Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood 102: 3224–3231.

    CAS  PubMed  Google Scholar 

  24. Hollenberg, M.D., M. Saifeddine, S. Sandhu, S. Houle, and N. Vergnolle. 2004. Proteinase‐activated receptor‐4: Evaluation of tethered ligand‐derived peptides as probes for receptor function and as inflammatory agonists in vivo. British Journal of Pharmacology 143: 443–454.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Houle, S., M.D. Papez, M. Ferazzini, M.D. Hollenberg, and N. Vergnolle. 2005. Neutrophils and the kallikrein–kinin system in proteinase‐activated receptor 4‐mediated inflammation in rodents. British Journal of Pharmacology 146: 670–678.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Russell, F.A., Veldhoen, V.E., Tchitchkan, D., and McDougall, J.J. 2009. Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. Receptor.

  27. Leger, A.J., S.L. Jacques, J. Badar, N.C. Kaneider, C.K. Derian, P. Andrade-Gordon, L. Covic, and A. Kuliopulos. 2006. Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis. Circulation 113: 1244–1254.

    CAS  PubMed  Google Scholar 

  28. Nieman, M.T. 2008. Protease-activated receptor 4 uses anionic residues to interact with α-thrombin in the absence or presence of protease-activated receptor 1†. Biochemistry 47: 13279–13286.

    CAS  PubMed  Google Scholar 

  29. Holinstat, M., B. Voss, M.L. Bilodeau, J.N. McLaughlin, J. Cleator, and H.E. Hamm. 2006. PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation. Journal of Biological Chemistry 281: 26665–26674.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Voss, B., J.N. McLaughlin, M. Holinstat, R. Zent, and H.E. Hamm. 2007. PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Molecular Pharmacology 71: 1399–1406.

    CAS  PubMed  Google Scholar 

  31. Knut, F., H. Linda, G. Peter, N. Martina, L.L. Tomas, and G. Magnus. 2011. Protease-activated receptor 1 (PAR1) signalling desensitization is counteracted via PAR4 signalling in human platelets. Biochemical Journal 436: 469–480.

    Google Scholar 

  32. Arora, P., T.K. Ricks, and J. Trejo. 2007. Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. Journal of Cell Science 120: 921–928.

    CAS  PubMed  Google Scholar 

  33. Covic, L., A.L. Gresser, and A. Kuliopulos. 2000. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39: 5458–5467.

    CAS  PubMed  Google Scholar 

  34. Faruqi, T.R., E.J. Weiss, M.J. Shapiro, W. Huang, and S.R. Coughlin. 2000. Structure-function analysis of protease-activated receptor 4 tethered ligand peptides determinants of specificity and utility in assays of receptor function. Journal of Biological Chemistry 275: 19728–19734.

    CAS  PubMed  Google Scholar 

  35. Hung, D.T., T. Vu, N.A. Nelken, and S.R. Coughlin. 1992. Thrombin-induced events in non-platelet cells are mediated by the unique proteolytic mechanism established for the cloned platelet thrombin receptor. The Journal of Cell Biology 116: 827–832.

    CAS  PubMed  Google Scholar 

  36. Paul, B.Z., J. Jin, and S.P. Kunapuli. 1999. Molecular mechanism of thromboxane A2-induced platelet aggregation ESSENTIAL ROLE FOR P2T AC and α2ARECEPTORS. Journal of Biological Chemistry 274: 29108–29114.

    CAS  PubMed  Google Scholar 

  37. Kim, S., C. Foster, A. Lecchi, T.M. Quinton, D.M. Prosser, J. Jin, M. Cattaneo, and S.P. Kunapuli. 2002. Protease-activated receptors 1 and 4 do not stimulate Gi signaling pathways in the absence of secreted ADP and cause human platelet aggregation independently of Gisignaling. Blood 99: 3629–3636.

    CAS  PubMed  Google Scholar 

  38. Kim, S., J. Jin, and S.P. Kunapuli. 2006. Relative contribution of G-protein-coupled pathways to protease-activated receptor-mediated Akt phosphorylation in platelets. Blood 107: 947–954.

    CAS  PubMed  Google Scholar 

  39. Jantzen, H.-M., D.S. Milstone, L. Gousset, P.B. Conley, and R.M. Mortensen. 2001. Impaired activation of murine platelets lacking Gαi2. Journal of Clinical Investigation 108: 477–483.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Weiss, E.J., J.R. Hamilton, K.E. Lease, and S.R. Coughlin. 2002. Protection against thrombosis in mice lacking PAR3. Blood 100: 3240–3244.

    CAS  PubMed  Google Scholar 

  41. Mao, Y., J. Jin, J.L. Daniel, and S.P. Kunapuli. 2009. Regulation of plasmin-induced protease-activated receptor 4 activation in platelets. Platelets 20: 191–198.

    CAS  PubMed  Google Scholar 

  42. Arachiche, A., M. de la Fuente, and M.T. Nieman. 2013. Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets. PloS One 8: e55740.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. DeWire, S.M., S. Ahn, R.J. Lefkowitz, and S.K. Shenoy. 2007. β-arrestins and cell signaling. Annual Review of Physiology 69: 483–510.

    CAS  PubMed  Google Scholar 

  44. Reiter, E., and R.J. Lefkowitz. 2006. GRKs and β-arrestins: Roles in receptor silencing, trafficking and signaling. Trends in Endocrinology and Metabolism 17: 159–165.

    CAS  PubMed  Google Scholar 

  45. Luttrell, L., S. Ferguson, Y. Daaka, W. Miller, S. Maudsley, G. Della Rocca, F.-T. Lin, H. Kawakatsu, K. Owada, and D. Luttrell. 1999. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283: 655–661.

    CAS  PubMed  Google Scholar 

  46. Yang, M., R. He, J. Benovic, and R. Ye. 2009. beta-Arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Biochemical Journal 417: 287–296.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Lodeiro, M., M. Theodoropoulou, M. Pardo, F.F. Casanueva, and J.P. Camiña. 2009. c-Src regulates Akt signaling in response to ghrelin via β-arrestin signaling-independent and-dependent mechanisms. PLoS One 4: e4686.

    PubMed Central  PubMed  Google Scholar 

  48. Goel, R., P.J. Phillips-Mason, D.M. Raben, and J.J. Baldassare. 2002. α-Thrombin induces rapid and sustained Akt phosphorylation by β-arrestin1-dependent and-independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. Journal of Biological Chemistry 277: 18640–18648.

    CAS  PubMed  Google Scholar 

  49. Buchanan, F.G., D.L. Gorden, P. Matta, Q. Shi, L.M. Matrisian, and R.N. DuBois. 2006. Role of β-arrestin 1 in the metastatic progression of colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America 103: 1492–1497.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Álvarez, C.J., M. Lodeiro, M. Theodoropoulou, J.P. Camiña, F.F. Casanueva, and Y. Pazos. 2009. Obestatin stimulates Akt signalling in gastric cancer cells through β-arrestin-mediated epidermal growth factor receptor transactivation. Endocrine-Related Cancer 16: 599–611.

    PubMed  Google Scholar 

  51. Goel, R., P.J. Phillips-Mason, A. Gardner, D.M. Raben, and J.J. Baldassare. 2004. α-Thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gβγ dimers from Gαq and Gαi2. Journal of Biological Chemistry 279: 6701–6710.

    CAS  PubMed  Google Scholar 

  52. Li, D., S. August, and D.S. Woulfe. 2008. GSK3β is a negative regulator of platelet function and thrombosis. Blood 111: 3522–3530.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Xiang, B., G. Zhang, J. Liu, A.J. Morris, S.S. Smyth, T.K. Gartner, and Z. Li. 2010. A Gi‐independent mechanism mediating Akt phosphorylation in platelets. Journal of Thrombosis and Haemostasis 8: 2032–2041.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Li, D., L. D’Angelo, M. Chavez, and D.S. Woulfe. 2011. Arrestin-2 differentially regulates PAR4 and ADP receptor signaling in platelets. Journal of Biological Chemistry 286: 3805–3814.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Szotowski, B., S. Antoniak, W. Poller, H.-P. Schultheiss, and U. Rauch. 2005. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circulation Research 96: 1233–1239.

    CAS  PubMed  Google Scholar 

  56. Sommeijer, D., H. Hansen, R. Van Oerle, K. Hamulyak, A. Van Zanten, E. Meesters, H. Spronk, and H. Ten Cate. 2006. Soluble tissue factor is a candidate marker for progression of microvascular disease in patients with type 2 diabetes. Journal of Thrombosis and Haemostasis 4: 574–580.

    CAS  PubMed  Google Scholar 

  57. Bokarewa, M., J. Morrissey, and A. Tarkowski. 2002. Intra-articular tissue factor/factor VII complex induces chronic arthritis. Inflammation Research 51: 471–477.

    CAS  PubMed  Google Scholar 

  58. Bokarewa, M.I., J.H. Morrissey, and A. Tarkowski. 2002. Tissue factor as a proinflammatory agent. Arthritis Research 4: 190–195.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Busso, N., V. Chobaz-Péclat, J. Hamilton, P. Spee, N. Wagtmann, and A. So. 2008. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Research and Therapy 10: R42.

    PubMed Central  PubMed  Google Scholar 

  60. Yang, Y.H., P. Hall, C.B. Little, A.J. Fosang, G. Milenkovski, L. Santos, J. Xue, P. Tipping, and E.F. Morand. 2005. Reduction of arthritis severity in protease‐activated receptor–deficient mice. Arthritis and Rheumatism 52: 1325–1332.

    CAS  PubMed  Google Scholar 

  61. Cunningham, M.A., E. Rondeau, X. Chen, S.R. Coughlin, S.R. Holdsworth, and P.G. Tipping. 2000. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. The Journal of Experimental Medicine 191: 455–462.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Steranka, L.R., D.C. Manning, C.J. DeHaas, J.W. Ferkany, S.A. Borosky, J.R. Connor, R.J. Vavrek, J.M. Stewart, and S.H. Snyder. 1988. Bradykinin as a pain mediator: Receptors are localized to sensory neurons, and antagonists have analgesic actions. Proceedings of the National Academy of Sciences 85: 3245–3249.

    CAS  Google Scholar 

  63. Bignold, L., and A. Lykke. 1975. Increased vascular permeability induced in synovialis of the rat by histamine, serotonin and bradykinin. Experientia 31: 671–672.

    CAS  PubMed  Google Scholar 

  64. Dick, W., D. Grennan, and I. Zeitlin. 1976. Studies on the relative effects of prostaglandins, bradykinin, 5‐hydroxytryptamine and histamine on the synovial microcirculation in dogs. British Journal of Pharmacology 56: 313–316.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Cruwys, S., B. Kidd, P. Mapp, D. Walsh, and D. Blake. 1992. The effects of calcitonin gene‐related peptide on formation of intra‐articular oedema by inflammatory mediators. British Journal of Pharmacology 107: 116–119.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kanaka, R., H.-G. Schaible, and R. Schmidt. 1985. Activation of fine articular afferent units by bradykinin. Brain Research 327: 81–90.

    CAS  PubMed  Google Scholar 

  67. Neugebauer, V., H.-G. Schaible, and R. Schmidt. 1989. Sensitization of articular afferents to mechanical stimuli by bradykinin. Pflügers Archiv 415: 330–335.

    CAS  PubMed  Google Scholar 

  68. Vergnolle, N., M.D. Hollenberg, K.A. Sharkey, and J.L. Wallace. 1999. Characterization of the inflammatory response to proteinase‐activated receptor‐2 (par2)‐activating peptides in the rat paw. British Journal of Pharmacology 127: 1083–1090.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Steinhoff, M., N. Vergnolle, S. Young, M. Tognetto, S. Amadesi, H. Ennes, M. Trevisani, M. Hollenberg, J. Wallace, and G. Caughey. 2000. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Medicine 6: 151–158.

    CAS  PubMed  Google Scholar 

  70. de Garavilla, L., N. Vergnolle, S.H. Young, H. Ennes, M. Steinhoff, V.S. Ossovskaya, M.R. D’Andrea, E.A. Mayer, J.L. Wallace, and M.D. Hollenberg. 2001. Agonists of proteinase‐activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology 133: 975–987.

    CAS  PubMed  Google Scholar 

  71. D’Andrea, M.R., M.R. Saban, N.-B. Nguyen, P. Andrade-Gordon, and R. Saban. 2003. Expression of protease-activated receptor-1,-2,-3, and-4 in control and experimentally inflamed mouse bladder. The American Journal of Pathology 162: 907–923.

    PubMed Central  PubMed  Google Scholar 

  72. Wang, Z., D. Chen, Z. Zhang, R. Zhang, S. An, and L. Yu. 2013. Protease‐activated receptor 4 activation increases the expression of calcitonin gene‐related peptide mRNA and protein in dorsal root ganglion neurons. Journal of Neuroscience Research 91: 1551–1562.

    CAS  PubMed  Google Scholar 

  73. Vellani, V., A.M. Kinsey, M. Prandini, S.C. Hechtfischer, P. Reeh, P.C. Magherini, C. Giacomoni, and P.A. McNaughton. 2010. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Molecular Pain 6: 61.

    PubMed Central  PubMed  Google Scholar 

  74. Donnerer, J., and I. Liebmann. 2011. Phosphorylation of ERK1/2 in dorsal root ganglia following sequential mustard oil and thermal stimulation of the rat hind paw. Pharmacology 89: 7–12.

    PubMed  Google Scholar 

  75. Brunet, A., D. Roux, P. Lenormand, S. Dowd, S. Keyse, and J. Pouysségur. 1999. Nuclear translocation of p42/p44 mitogen‐activated protein kinase is required for growth factor‐induced gene expression and cell cycle entry. The EMBO Journal 18: 664–674.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Hochholdinger, F., G. Baier, A. Nogalo, B. Bauer, H.H. Grunicke, and F. Überall. 1999. Novel membrane-targeted ERK1 and ERK2 chimeras which act as dominant negative, isotype-specific mitogen-activated protein kinase inhibitors of Ras-Raf-mediated transcriptional activation of c-fos in NIH 3T3 cells. Molecular and Cellular Biology 19: 8052–8065.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Lanigan, T.M., and A.F. Russo. 1997. Binding of upstream stimulatory factor and a cell-specific activator to the calcitonin/calcitonin gene-related peptide enhancer. Journal of Biological Chemistry 272: 18316–18324.

    CAS  PubMed  Google Scholar 

  78. Nakanishi, M., K. Hata, T. Nagayama, T. Sakurai, T. Nishisho, H. Wakabayashi, T. Hiraga, S. Ebisu, and T. Yoneda. 2010. Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Molecular Biology of the Cell 21: 2568–2577.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Tajti, J., A. Kuris, L. Vécsei, C.-B. Xu, and L. Edvinsson. 2011. Organ culture of the trigeminal ganglion induces enhanced expression of calcitonin gene-related peptide via activation of extracellular signal-regulated protein kinase 1/2. Cephalalgia 31: 95–105.

    PubMed  Google Scholar 

  80. Hetman, M., and A. Gozdz. 2004. Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. European Journal of Biochemistry 271: 2050–2055.

    CAS  PubMed  Google Scholar 

  81. Chen, R., C. Sarnecki, and J. Blenis. 1992. Nuclear localization and regulation of erk-and rsk-encoded protein kinases. Molecular and Cellular Biology 12: 915–927.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Ritchie, E., M. Saka, C. Mackenzie, R. Drummond, C. Wheeler‐Jones, T. Kanke, and R. Plevin. 2007. Cytokine upregulation of proteinase‐activated‐receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase β in human endothelial cells. British Journal of Pharmacology 150: 1044–1054.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Ma, C., K.A. Bower, G. Chen, X. Shi, Z.-J. Ke, and J. Luo. 2008. Interaction between ERK and GSK3β mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. Journal of Biological Chemistry 283: 9248–9256.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. De Sousa, L.P., B.S. Brasil, B.M. Silva, M.H. Freitas, S.V. Nogueira, P.C. Ferreira, E.G. Kroon, and C.A. Bonjardim. 2005. Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochemical and Biophysical Research Communications 329: 237–245.

    PubMed  Google Scholar 

  85. Versteeg, H., K. Borensztajn, M. Kerver, W. Ruf, P. Reitsma, C. Spek, and M. Peppelenbosch. 2008. TF: FVIIa‐specific activation of CREB upregulates proapoptotic proteins via protease‐activated receptor‐2. Journal of Thrombosis and Haemostasis 6: 1550–1557.

    CAS  PubMed  Google Scholar 

  86. Wang, H., S. Wen, N.W. Bunnett, R. Leduc, M.D. Hollenberg, and W.K. MacNaughton. 2008. Proteinase-activated receptor-2 induces cyclooxygenase-2 expression through β-catenin and cyclic AMP-response element-binding protein. Journal of Biological Chemistry 283: 809–815.

    CAS  PubMed  Google Scholar 

  87. Lei, L., X. Yuan, S. Wang, F. Zhang, Y. Han, Q. Ning, G. Luo, and S. Lu. 2012. Mitogen-activated protein kinase pathways are involved in the upregulation of calcitonin gene-related peptide of rat trigeminal ganglion after organ culture. Journal of Molecular Neuroscience 48: 53–65.

    CAS  PubMed  Google Scholar 

  88. Ji, R.-R., H. Baba, G.J. Brenner, and C.J. Woolf. 1999. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature Neuroscience 2: 1114–1119.

    CAS  PubMed  Google Scholar 

  89. Zhu, W.-J., H. Yamanaka, K. Obata, Y. Dai, K. Kobayashi, T. Kozai, A. Tokunaga, and K. Noguchi. 2005. Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Research 1041: 205–211.

    CAS  PubMed  Google Scholar 

  90. Bulling, D.G., D. Kelly, S. Bond, D.S. McQueen, and J.R. Seckl. 2001. Adjuvant‐induced joint inflammation causes very rapid transcription of β‐preprotachykinin and α‐CGRP genes in innervating sensory ganglia. Journal of Neurochemistry 77: 372–382.

    CAS  PubMed  Google Scholar 

  91. Ambalavanar, R., M. Moritani, A. Moutanni, P. Gangula, C. Yallampalli, and D. Dessem. 2006. Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 120: 53–68.

    CAS  PubMed  Google Scholar 

  92. Xu, X., P. Wang, X. Zou, D. Li, L. Fang, and Q. Lin. 2009. Increases in transient receptor potential vanilloid‐1 mRNA and protein in primary afferent neurons stimulated by protein kinase C and their possible role in neurogenic inflammation. Journal of Neuroscience Research 87: 482–494.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Benemei, S., P. Nicoletti, J.G. Capone, and P. Geppetti. 2009. CGRP receptors in the control of pain and inflammation. Current Opinion in Pharmacology 9: 9–14.

    CAS  PubMed  Google Scholar 

  94. Dattilio, A., and M.A. Vizzard. 2005. Up-regulation of protease activated receptors in bladder after cyclophosphamide induced cystitis and colocalization with capsaicin receptor (VR1) in bladder nerve fibers. The Journal of Urology 173: 635–639.

    CAS  PubMed  Google Scholar 

  95. Chen, D., Z. Wang, Z. Zhang, R. Zhang, and L. Yu. 2013. Capsaicin up-regulates protease-activated receptor-4 mRNA and protein in primary cultured dorsal root ganglion neurons. Cellular and Molecular Neurobiology 33: 337–346.

    PubMed  Google Scholar 

  96. Asfaha, S., V. Brussee, K. Chapman, D.W. Zochodne, and N. Vergnolle. 2002. Proteinase‐activated receptor‐1 agonists attenuate nociception in response to noxious stimuli. British Journal of Pharmacology 135: 1101–1106.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Bar-Shavit, R., A. Kahn, G.D. Wilner, and J.W. Fenton. 1983. Monocyte chemotaxis: Stimulation by specific exosite region in thrombin. Science 220: 728–731.

    CAS  PubMed  Google Scholar 

  98. Bar-Shavit, R., and G.D. Wilner. 1986. Biologic activities of nonenzymatic thrombin: Elucidation of a macrophage interactive domain. Seminars in Thrombosis and Hemostasis 12: 244–249.

    CAS  PubMed  Google Scholar 

  99. Herbert, J., E. Dupuy, M. Laplace, J. Zini, S.R. Bar, and G. Tobelem. 1994. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway. Biochemical Journal 303: 227–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kaplan, A.P., K. Joseph, and M. Silverberg. 2002. Pathways for bradykinin formation and inflammatory disease. Journal of Allergy and Clinical Immunology 109: 195–209.

    CAS  PubMed  Google Scholar 

  101. Auge, C., D. Balz‐hara, M. Steinhoff, N. Vergnolle, and N. Cenac. 2009. Protease‐activated receptor‐4 (PAR4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterology and Motility 21: 1189–e1107.

    CAS  PubMed  Google Scholar 

  102. Kawabata, A., R. Kuroda, H. Nishikawa, and K. Kawai. 1999. Modulation by protease‐activated receptors of the rat duodenal motility in vitro: Possible mechanisms underlying the evoked contraction and relaxation. British Journal of Pharmacology 128: 865–872.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Tognetto, M., M. Trevisani, B. Maggiore, G. Navarra, A. Turini, R. Guerrini, N.W. Bunnett, P. Geppetti, and S. Harrison. 2000. Evidence that PAR‐1 and PAR‐2 mediate prostanoid‐dependent contraction in isolated guinea‐pig gallbladder. British Journal of Pharmacology 131: 689–694.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Xu, W.-f., H. Andersen, T.E. Whitmore, S.R. Presnell, D.P. Yee, A. Ching, T. Gilbert, E.W. Davie, and D.C. Foster. 1998. Cloning and characterization of human protease-activated receptor 4. Proceedings of the National Academy of Sciences 95: 6642–6646.

    CAS  Google Scholar 

  105. Bradesi, S. 2009. PAR4: a new role in the modulation of visceral nociception. Neurogastroenterology and Motility 21: 1129–1132.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Mule, F., R. Pizzuti, A. Capparelli, and N. Vergnolle. 2004. Evidence for the presence of functional protease activated receptor 4 (PAR4) in the rat colon. Gut 53: 229–234.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Maggi, C.A. 1995. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Progress in Neurobiology 45: 1–98.

    CAS  PubMed  Google Scholar 

  108. Grady, E.F., P. Baluk, S. Böhm, P.D. Gamp, H. Wong, D.G. Payan, J. Ansel, A.L. Portbury, J.B. Furness, and D.M. McDonald. 1996. Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. The Journal of Neuroscience 16: 6975–6986.

    CAS  PubMed  Google Scholar 

  109. Serio, R., F. Mule, F. Bonvissuto, and A. Postorino. 1998. Tachykinins mediate noncholinergic excitatory neural responses in the circular muscle of rat proximal colon. Canadian Journal of Physiology and Pharmacology 76: 684–689.

    CAS  PubMed  Google Scholar 

  110. Csuka, E., V.H. Hans, E. Ammann, O. Trentz, T. Kossmann, and M.C. Morganti-Kossmann. 2000. Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport 11: 2587–2590.

    CAS  PubMed  Google Scholar 

  111. Popovich, P.G. 2000. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Progress in Brain Research 128: 43.

    CAS  PubMed  Google Scholar 

  112. Stoll, G., S. Jander, and M. Schroeter. 1998. Inflammation and glial responses in ischemic brain lesions. Progress in Neurobiology 56: 149–171.

    CAS  PubMed  Google Scholar 

  113. Benveniste, E.N. 1997. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. Journal of Molecular Medicine 75: 165–173.

    CAS  PubMed  Google Scholar 

  114. McGeer, E.G., and P.L. McGeer. 1998. The importance of inflammatory mechanisms in Alzheimer disease. Experimental Gerontology 33: 371–378.

    CAS  PubMed  Google Scholar 

  115. Ryu, J., H. Pyo, I. Jou, and E. Joe. 2000. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-κB. Journal of Biological Chemistry 275: 29955–29959.

    CAS  PubMed  Google Scholar 

  116. Suo, Z., M. Wu, B.A. Citron, C. Gao, and B.W. Festoff. 2003. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. Journal of Biological Chemistry 278: 31177–31183.

    CAS  PubMed  Google Scholar 

  117. Möller, T., U.K. Hanisch, and B.R. Ransom. 2000. Thrombin‐induced activation of cultured rodent microglia. Journal of Neurochemistry 75: 1539–1547.

    PubMed  Google Scholar 

  118. Suo, Z., M. Wu, S. Ameenuddin, H.E. Anderson, J.E. Zoloty, B.A. Citron, P. Andrade‐Gordon, and B.W. Festoff. 2002. Participation of protease‐activated receptor‐1 in thrombin‐induced microglial activation. Journal of Neurochemistry 80: 655–666.

    CAS  PubMed  Google Scholar 

  119. Hirano, K., N. Nomoto, M. Hirano, F. Momota, A. Hanada, and H. Kanaide. 2007. Distinct Ca2+ requirement for NO production between proteinase-activated receptor 1 and 4 (PAR1 and PAR4) in vascular endothelial cells. Journal of Pharmacology and Experimental Therapeutics 322: 668–677.

    CAS  PubMed  Google Scholar 

  120. Steinberg, S.F. 2005. The cardiovascular actions of protease-activated receptors. Molecular Pharmacology 67: 2–11.

    CAS  PubMed  Google Scholar 

  121. Sabri, A., J. Guo, H. Elouardighi, A.L. Darrow, P. Andrade-Gordon, and S.F. Steinberg. 2003. Mechanisms of Protease-activated Receptor-4 Actions in Cardiomyocytes ROLE OF Src TYROSINE KINASE. Journal of Biological Chemistry 278: 11714–11720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Xie.

Additional information

Qiang Fu and Jing Cheng are co-first authors; they contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Cheng, J., Gao, Y. et al. Protease-Activated Receptor 4: A Critical Participator in Inflammatory Response. Inflammation 38, 886–895 (2015). https://doi.org/10.1007/s10753-014-9999-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-9999-6

KEY WORDS

Navigation