Skip to main content

Advertisement

Log in

Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that Fibroblast Growth Factors (FGF), a family of genes that regulate cortical size and connectivity, may be responsible for these developmental alterations. Studies in animal models suggest that mutations in FGF genes lead to altered cortical volume, excitatory cortical neuron number, minicolum pathology, hyperactivity and social deficits. Thus, many risk factors may converge upon FGF-regulated pathogenetic pathways, which alter excitatory/inhibitory balance and cortical modular architecture, and predispose to autism spectrum disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. DSM-IV (4th edn.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.

    PubMed  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    PubMed  Google Scholar 

  • Blak, A. A., Naserke, T., Weisenhorn, D. M., Prakash, N., Partanen, J., & Wurst, W. (2005). Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Developmental Dynamics, 233, 1023–1030. doi:10.1002/dvdy.20386.

    PubMed  Google Scholar 

  • Boddaert, N., Chabane, N., Gervais, H., Good, C. D., Bourgeois, M., Plumet, M. H., et al. (2004). Superior temporal sulcus anatomical abnormalities in childhood autism: A voxel-based morphometry MRI study. NeuroImage, 23, 364–369. doi:10.1016/j.neuroimage.2004.06.016.

    PubMed  Google Scholar 

  • Butler, M. G., Dasouki, M. J., Zhou, X. P., Talebizadeh, Z., Brown, M., Takahashi, T. N., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321. doi:10.1136/jmg.2004.024646.

    PubMed  Google Scholar 

  • Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi:10.1111/j.1365-2990.2006.00745.x.

    PubMed  Google Scholar 

  • Cameron, R. S., & Rakic, P. (1991). Glial cell lineage in the cerebral cortex: A review and synthesis. Glia, 4, 124–137. doi:10.1002/glia.440040204.

    PubMed  Google Scholar 

  • Campbell, D. B., Sutcliffe, J. S., Ebert, P. J., Militerni, R., Bravaccio, C., Trillo, S., et al. (2006). A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 103, 16834–16839. doi:10.1073/pnas.0605296103.

    PubMed  Google Scholar 

  • Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57, 126–133. doi:10.1016/j.biopsych.2004.11.005.

    PubMed  Google Scholar 

  • Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage, 16, 1038–1051. doi:10.1006/nimg.2002.1099.

    PubMed  Google Scholar 

  • Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453. doi:10.1002/ana.20196. author reply 454.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428–432.

    PubMed  Google Scholar 

  • Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi:10.1007/s00401-006-0085-5.

    PubMed  Google Scholar 

  • Chaste, P., Nygren, G., Anckarsater, H., Rastam, M., Coleman, M., Leboyer, M., et al. (2007). Mutation screening of the ARX gene in patients with autism. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B, 228–230. doi:10.1002/ajmg.b.30440.

    Google Scholar 

  • Cheng, Y., Black, I. B., & DiCicco-Bloom, E. (2002). Hippocampal granule neuron production and population size are regulated by levels of bFGF. The European Journal of Neuroscience, 15, 3–12. doi:10.1046/j.0953-816x.2001.01832.x.

    PubMed  Google Scholar 

  • Cholfin, J. A., & Rubenstein, J. L. (2007). Patterning of frontal cortex subdivisions by Fgf17. Proceedings of the National Academy of Sciences of the United States of America, 104, 7652–7657. doi:10.1073/pnas.0702225104.

    PubMed  Google Scholar 

  • Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews, 10, 106–111. doi:10.1002/mrdd.20020.

    PubMed  Google Scholar 

  • Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi:10.1001/jama.290.3.337.

    PubMed  Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.

    PubMed  Google Scholar 

  • Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi:10.1016/j.ijdevneu.2005.01.003.

    PubMed  Google Scholar 

  • Davidovitch, M., Patterson, B., & Gartside, P. (1996). Head circumference measurements in children with autism. Journal of Child Neurology, 11, 389–393.

    Article  PubMed  Google Scholar 

  • Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61, 458–464. doi:10.1016/j.biopsych.2006.07.016.

    PubMed  Google Scholar 

  • de Carlos, J. A., Lopez-Mascaraque, L., & Valverde, F. (1996). Dynamics of cell migration from the lateral ganglionic eminence in the rat. The Journal of Neuroscience, 16, 6146–6156.

    PubMed  Google Scholar 

  • Dementieva, Y. A., Vance, D. D., Donnelly, S. L., Elston, L. A., Wolpert, C. M., Ravan, S. A., et al. (2005). Accelerated head growth in early development of individuals with autism. Pediatric Neurology, 32, 102–108. doi:10.1016/j.pediatrneurol.2004.08.005.

    PubMed  Google Scholar 

  • Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development (Cambridge, England). Supplement, 127, 2863–2872.

    Google Scholar 

  • Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27. doi:10.1038/ng1933.

    PubMed  Google Scholar 

  • el-Husseini, A.e.-D., Paterson, J. A., & Shiu, R. P. (1994). Basic fibroblast growth factor (bFGF) and two of its receptors, FGFR1 and FGFR2: Gene expression in the rat brain during postnatal development as determined by quantitative RT-PCR. Molecular and Cellular Endocrinology, 104, 191–200.

    Google Scholar 

  • Feng, J., Schroer, R., Yan, J., Song, W., Yang, C., Bockholt, A., et al. (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neuroscience Letters, 409, 10–13.

    PubMed  Google Scholar 

  • Fidler, D. J., Bailey, J. N., & Smalley, S. L. (2000). Macrocephaly in autism and other pervasive developmental disorders. Developmental Medicine and Child Neurology, 42, 737–740.

    PubMed  Google Scholar 

  • Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.

    PubMed  Google Scholar 

  • Fombonne, E., Roge, B., Claverie, J., Courty, S., & Fremolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29, 113–119.

    PubMed  Google Scholar 

  • Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17, 55–61.

    PubMed  Google Scholar 

  • Fukumoto, A., Hashimoto, T., Ito, H., Nishimura, M., Tsuda, Y., Miyazaki, M., et al. (2008). Growth of head circumference in autistic infants during the first year of life. Journal of Autism and Developmental Disorders, 38, 411–418.

    PubMed  Google Scholar 

  • Ganat, Y. M., Silbereis, J., Cave, C., Ngu, H., Anderson, G. M., Ohkubo, Y., et al. (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. Journal of Neuroscience, 26, 8609–8621.

    PubMed  Google Scholar 

  • Gant, J. C., Thibault, O., Blalock, E. M., Yang, J., Bachstetter, A., Kotick, J., Schauwecker, P. E., Hauser, K.·F., Smith, G. M., Mervis, R., Li, Y. & Barnes, G. N. (2008) Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia (in press). doi:10.1111/j.1528-1167.2008.01725.x.

  • Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–111.

    PubMed  Google Scholar 

  • Gharani, N., Benayed, R., Mancuso, V., Brzustowicz, L. M., & Millonig, J. H. (2004). Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Molecular Psychiatry, 9, 474–484.

    PubMed  Google Scholar 

  • Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Developmental Medicine and Child Neurology, 44, 296–300.

    PubMed  Google Scholar 

  • Goffin, A., Hoefsloot, L. H., Bosgoed, E., Swillen, A., & Fryns, J. P. (2001). PTEN mutation in a family with Cowden syndrome and autism. American Journal of Medical Genetics, 105, 521–524.

    PubMed  Google Scholar 

  • Hardan, A. Y., Minshew, N. J., & Keshavan, M. S. (2000). Corpus callosum size in autism. Neurology, 55, 1033–1036.

    PubMed  Google Scholar 

  • Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 1–6.

    PubMed  Google Scholar 

  • Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., et al. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.

    PubMed  Google Scholar 

  • Hendry, J., DeVito, T., Gelman, N., Densmore, M., Rajakumar, N., Pavlosky, W., et al. (2006). White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage, 29, 1049–1057.

    PubMed  Google Scholar 

  • Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., et al. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.

    PubMed  Google Scholar 

  • Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.

    PubMed  Google Scholar 

  • Hodapp, R. M., & Urbano, R. C. (2007). Adult siblings of individuals with Down syndrome versus with autism: Findings from a large-scale US survey. Journal of Intellectual Disability Research, 51, 1018–1029.

    PubMed  Google Scholar 

  • Huffman, K. J., Garel, S., & Rubenstein, J. L. (2004). Fgf8 regulates the development of intra-neocortical projections. Journal of Neuroscience, 24, 8917–8923.

    PubMed  Google Scholar 

  • Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.

    PubMed  Google Scholar 

  • Jones, E. G., & Peters, A. (1984). Cerebral cortex. Cellular components of the cerebral cortex. New York: Plenum.

    Google Scholar 

  • Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.

    Google Scholar 

  • Korada, S., Zheng, W., Basilico, C., Schwartz, M. L., & Vaccarino, F. M. (2002). Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. Journal of Neuroscience, 22, 863–875.

    PubMed  Google Scholar 

  • Kornack, D. R., & Rakic, P. (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294, 2127–2130.

    PubMed  Google Scholar 

  • Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7, 883–890.

    PubMed  Google Scholar 

  • Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang, W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.

    PubMed  Google Scholar 

  • Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., et al. (2006). Head circumference and height in autism: A study by the Collaborative Program of Excellence in Autism. American Journal of Medical Genetics. Part A, 140, 2257–2274.

    PubMed  Google Scholar 

  • Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 282–290.

    PubMed  Google Scholar 

  • Laumonnier, F., Bonnet-Brilhault, F., Gomot, M., Blanc, R., David, A., Moizard, M. P., et al. (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. American Journal of Human Genetics, 74, 552–557.

    PubMed  Google Scholar 

  • Lavdas, A. A., Grigoriou, M., Pachnis, V., & Parnavelas, J. G. (1999). The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience, 19, 7881–7888.

    PubMed  Google Scholar 

  • Letinic, K., Zoncu, R., & Rakic, P. (2002). Origin of GABAergic neurons in the human neocortex. Nature, 417, 645–649.

    PubMed  Google Scholar 

  • Levitt, P., Cooper, M. L., & Rakic, P. (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. Journal of Neuroscience, 1, 27–39.

    PubMed  Google Scholar 

  • Manes, F., Piven, J., Vrancic, D., Nanclares, V., Plebst, C., & Starkstein, S. E. (1999). An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neurosciences, 11, 470–474.

    PubMed  Google Scholar 

  • Marshall, C. A., & Goldman, J. E. (2002). Subpallial dlx2-expressing cells give rise to astrocytes and oligodendrocytes in the cerebral cortex and white matter. Journal of Neuroscience, 22, 9821–9830.

    PubMed  Google Scholar 

  • Marshall, C. A., Suzuki, S. O., & Goldman, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going? Glia, 43, 52–61.

    PubMed  Google Scholar 

  • McCaffery, P., & Deutsch, C. K. (2005). Macrocephaly and the control of brain growth in autistic disorders. Progress in Neurobiology, 77, 38–56.

    PubMed  Google Scholar 

  • Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nature Genetics, 18, 136–141.

    PubMed  Google Scholar 

  • Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95, 339–350.

    PubMed  Google Scholar 

  • Mountcastle, V. B. (1997). The columnar organization of the neocortex. [Review]. Brain, 120, 701–722.

    PubMed  Google Scholar 

  • Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.

    PubMed  Google Scholar 

  • Noctor, S. C., Martinez-Cerdeno, V., & Kriegstein, A. R. (2007). Contribution of intermediate progenitor cells to cortical histogenesis. Archives of Neurology, 64, 639–642.

    PubMed  Google Scholar 

  • Ohkubo, Y., Uchida, A. O., Shin, D., Partanen, J., & Vaccarino, F. M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. Journal of Neuroscience, 24, 6057–6069.

    PubMed  Google Scholar 

  • Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., et al. (2003). Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. Journal of Biological Chemistry, 278, 34226–34236.

    PubMed  Google Scholar 

  • Ong, S. H., Hadari, Y. R., Gotoh, N., Guy, G. R., Schlessinger, J., & Lax, I. (2001). Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 6074–6079.

    PubMed  Google Scholar 

  • Ortega, S., Ittmann, M., Tsang, S. H., Ehrich, M., & Basilico, C. (1998). Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 95, 5672–5677.

    PubMed  Google Scholar 

  • Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., et al. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561–570.

    PubMed  Google Scholar 

  • Palmen, S. J., & van Engeland, H. (2004). Review on structural neuroimaging findings in autism. Journal of Neural Transmission, 111, 903–929.

    PubMed  Google Scholar 

  • Palmen, S. J., van Engeland, H., Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583.

    PubMed  Google Scholar 

  • Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29, 349–358.

    PubMed  Google Scholar 

  • Peters, A., Cifuentes, J. M., & Sethares, C. (1997). The organization of pyramidal cells in area 18 of the rhesus monkey. Cerebral Cortex, 7, 405–421.

    PubMed  Google Scholar 

  • Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.

    Article  PubMed  Google Scholar 

  • Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. American Journal of Psychiatry, 152, 1145–1149.

    PubMed  Google Scholar 

  • Piven, J., Bailey, J., Ranson, B. J., & Arndt, S. (1997). An MRI study of the corpus callosum in autism. American Journal of Psychiatry, 154, 1051–1056.

    PubMed  Google Scholar 

  • Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., & Vaccarino, F. M. (2000). Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. Journal of Neuroscience, 20, 5012–5023.

    PubMed  Google Scholar 

  • Rakic, P. (2003). Developmental and evolutionary adaptations of cortical radial glia. Cerebral Cortex, 13, 541–549.

    PubMed  Google Scholar 

  • Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.

    PubMed  Google Scholar 

  • Ringo, J. L. (1991). Neuronal interconnections as a function of brain size. Brain, Behavior and Evolution, 38, 1–6.

    PubMed  Google Scholar 

  • Samaco, R. C., Hogart, A., & LaSalle, J. M. (2005). Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human Molecular Genetics, 14, 483–492.

    PubMed  Google Scholar 

  • Santangelo, S. L., & Tsatsanis, K. (2005). What is known about autism: Genes, brain, and behavior. American Journal of Pharmacogenomics, 5, 71–92.

    PubMed  Google Scholar 

  • Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V.·S., Shah, N. M., Rubenstein, J. L. & Mucke, L. (2007) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behavior, 7, 344–354.

    Google Scholar 

  • Sherr, E. H. (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): One gene leads to many phenotypes. Current Opinion in Pediatrics, 15, 567–571.

    PubMed  Google Scholar 

  • Schultz, R.T., Win, L., Jackowski, A., Klin, A., Staib, L., Papademetris, X., Babitz, T., Carter, E., Klaiman, C., Feiler, A. & Volkmar, F. (2005) Brain Morphology in Autism Spectrum Disorders: An MRI Study. In: International Meeting for Autism Research (IMFAR). Boston, MA.

  • Shin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R., et al. (2004). Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. Journal of Neuroscience, 24, 2247–2258.

    PubMed  Google Scholar 

  • Smith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N., et al. (2006). Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience, 9, 787–797.

    PubMed  Google Scholar 

  • Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I. C., Jakobsson, G., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.

    PubMed  Google Scholar 

  • Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.

    PubMed  Google Scholar 

  • Tao, Y., Black, I. B., & DiCicco-Bloom, E. (1996). Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). Journal of Comparative Neurology, 376, 653–663.

    PubMed  Google Scholar 

  • Tanaka, A., Kamiakito, T., Hakamata, Y., Fujii, A., Kuriki, K., & Fukayama, M. (2001). Extensive neuronal localization and neurotrophic function of fibroblast growth factor 8 in the nervous system. Brain Research, 912, 105–115.

    PubMed  Google Scholar 

  • Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Jarvela, I., et al. (2006). A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Molecular Psychiatry, 11, 29–36.

    PubMed  Google Scholar 

  • Turner, G., Partington, M., Kerr, B., Mangelsdorf, M., & Gecz, J. (2002). Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two families with an identical ARX gene mutation. American Journal of Medical Genetics, 112, 405–411.

    PubMed  Google Scholar 

  • Vaccarino, F. M., Fagel, D. M., Ganat, Y., Maragnoli, M. E., Ment, L. R., Ohkubo, Y., et al. (2007). Astroglial cells in development, regeneration, and repair. Neuroscientist, 13, 173–185.

    PubMed  Google Scholar 

  • Vaccarino, F. M., Schwartz, M. L., Hartigan, D., & Leckman, J. F. (1995). Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral Cortex, 5, 64–78.

    PubMed  Google Scholar 

  • Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., et al. (1999b). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience, 2, 246–253.

    PubMed  Google Scholar 

  • Vaccarino, F. M., Schwartz, M. L., Raballo, R., Rhee, J., & Lyn-Cook, R. (1999a). Fibroblast growth factor signaling regulates growth and morphogenesis at multiple steps during brain development. Current Topics in Developmental Biology, 46, 179–200.

    PubMed  Google Scholar 

  • Volkmar, F. R., Lord, C., Bailey, A., Schultz, R. T., & Klin, A. (2004). Autism and pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 45, 135–170.

    PubMed  Google Scholar 

  • Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.

    PubMed  Google Scholar 

  • Wilke, T. A., Gubbels, S., Schwartz, J., & Richman, J. M. (1997). Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Developmental Dynamics, 210, 41–52.

    PubMed  Google Scholar 

  • Woodhouse, W., Bailey, A., Rutter, M., Bolton, P., Baird, G., & Le Couteur, A. (1996). Head circumference in autism and other pervasive developmental disorders. Journal of Child Psychology and Psychiatry, 37, 665–671.

    PubMed  Google Scholar 

  • Wuechner, C., Nordqvist, A. C., Winterpacht, A., Zabel, B., & Schalling, M. (1996). Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. International Journal of Developmental Biology, 40, 1185–1188.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants MH067715, Autism Speaks and the NARSAD Foundation. We thank Shawna Ellis for technical assistance and all members of the Vaccarino lab for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora M. Vaccarino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaccarino, F.M., Grigorenko, E.L., Smith, K.M. et al. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism. J Autism Dev Disord 39, 511–520 (2009). https://doi.org/10.1007/s10803-008-0653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-008-0653-8

Keywords

Navigation