Skip to main content
Log in

When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents

  • Published:
Journal of Bioeconomics Aims and scope

Abstract

We expect that human organizations and cooperative animal groups should be optimized for collective performance. This often involves the allocation of different individuals to different tasks. Social insect colonies are a prime example of cooperative animal groups that display sophisticated mechanisms of task allocation. Here we discuss which task allocation strategies may be adapted to which environmental and social conditions. Effective and robust task allocation is a hard problem, and in many biological and engineered complex systems is solved in a decentralized manner: human organizations may benefit from insights into what makes decentralized strategies of group organization effective. In addition, we often find considerable variation among individuals in how much work they appear to contribute, despite the fact that individual selfishness in social insects is low and optimization occurs largely at the group level. We review possible explanations for uneven workloads among workers, including limitations on individual information collection or constraints of task allocation efficiency, such as when there is a mismatch between the frequency of fluctuations in demand for work and the speed at which workers can be reallocated. These processes are likely to apply to any system in which worker agents are allocated to tasks with fluctuating demand, and should therefore be instructive to understanding optimal task allocation and inactive workers in any distributed system. Some of these processes imply that a certain proportion of inactive workers can be an adaptive strategy for collective organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allison, T., & Cicchetti, D. V. (1976). Sleep in mammals: Ecological and constitutional correlates. Science, 194, 732–734.

    Article  Google Scholar 

  • Anderson, C., & Ratnieks, F. L. (1999). Task partitioning in insect societies. I. Effect of colony size on queueing delay and colony ergonomic efficiency. The American Naturalist, 154, 521–535.

    Article  Google Scholar 

  • Angelini, V., Brugiavini, A., & Weber, G. (2009). Ageing and unused capacity in Europe: Is there an early retirement trap? Economic Policy, 24, 463–508.

    Article  Google Scholar 

  • Asvanund, A., Clay, K., Krishnan, R., & Smith, M. D. (2004). An empirical analysis of network externalities in peer-to-peer music-sharing networks. Information Systems Research, 15, 155–174. doi:10.1287/isre.1040.0020.

    Article  Google Scholar 

  • Baran, M., & Wu, F. (1989). Network reconfiguration in distribution-systems for loss reduction and load balancing. IEEE Transactions on Power Delivery, 4, 1401–1407. doi:10.1109/61.25627.

    Article  Google Scholar 

  • Becker, G. S., & Murphy, K. M. (1992). The division of labor, coordination costs, and knowledge. Quarterly Journal of Economics, 107, 1137–1160.

    Article  Google Scholar 

  • Beekman, M., Calis, J. N. M., & Boot, W. J. (2000). Insect behaviour: Parasitic honeybees get royal treatment. Nature, 404, 723–723. doi:10.1038/35008148.

    Article  Google Scholar 

  • Bernays, E. A. (2001). Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Annual Review of Entomology, 46, 703–727.

    Article  Google Scholar 

  • Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: Numerical methods. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

  • Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46, 413–440.

    Article  Google Scholar 

  • Blanchard, G. B., Orledge, G. M., Reynolds, S. E., & Franks, N. R. (2000). Division of labour and seasonality in the ant Leptothorax albipennis: Worker corpulence and its influence on behaviour. Animal Behaviour, 59, 723–738.

    Article  Google Scholar 

  • Blonder, B., & Dornhaus, A. (2011). Time-ordered networks reveal limitations to information flow in ant colonies. PloS One, 6, e20298.

    Article  Google Scholar 

  • Bolton, B., Alpert, G., Ward, P. S., & Naskrecki, P. (2006). Bolton’s catalogue of ants of the world: 1758–2005. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bourke, A. F. G., & Franks, N. R. (1995). Social evolution in ants. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Breed, M. D., Guzmán-Novoa, E., & Hunt, G. J. (2004). Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49(271–298), 3.

    Google Scholar 

  • Breed, M. D., Williams, D. B., & Queral, A. (2002). Demand for task performance and workforce replacement: Undertakers in honeybee, Apis mellifera, colonies. Journal of Insect Behavior, 15, 319–329.

    Article  Google Scholar 

  • Brugiavini, A., Croda, E., & Mariuzzo, F. (2005). Labour force participation of the elderly: Unused capacity? In A. Börsch-Supan, A. Brugiavini, H. Jürges, J. Mackenbach, J. Siegrist & G. Weber (Eds.), Health, ageing and retirement in Europe–first results from the survey of health, ageing and retirement in Europe (pp. 236–240). Mannheim: MEA.

  • Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125.

    Article  Google Scholar 

  • Calahi, P., Traniello, J. F., & Werner, M. H. (1983). Age polyethism: its occurrence in the ant Pheidole hortensis, and some general considerations. Psyche (Stuttg), 90, 395–412.

    Article  Google Scholar 

  • Camargo, R. S., Forti, L. C., Lopes, J. F. S., Andrade, A. P. P., & Ottati, A. L. T. (2007). Age polyethism in the leaf-cutting ant Acromyrmex subterraneus brunneus Forel, 1911 (Hym., Formicidae). Journal of Applied Entomology, 131(2), 139–145.

    Article  Google Scholar 

  • Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2003). Self-organization in biological systems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Charbonneau, D., & Dornhaus, A. (2015). Workers “specialized” on inactivity: Behavioral consistency of inactive workers and their role in task allocation. Behavioral Ecology and Sociobiology. doi:10.1007/s00265-015-1958-1.

  • Charbonneau, D., & Dornhaus, A. (In prep.). Who are the “lazy” ants? Concurrently testing multiple hypotheses for the function of inactivity in social insects.

  • Charbonneau, D., Hillis, N., & Dornhaus, A. (2015). ‘Lazy’ in nature: Ant colony time budgets show high ‘inactivity’ in the field as well as in the lab. Insectes Sociaux, 62(1), 31–35. doi:10.1007/s00040-014-0370-6.

  • Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86, 361–377.

    Article  Google Scholar 

  • Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination. Autonomous Agents and Multi-Agent Systems, 8, 237–266.

    Article  Google Scholar 

  • Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS Biology, 6, e216. doi:10.1371/journal.pbio.0060216.

    Article  Google Scholar 

  • Cole, B. J. (1986). The social behavior of Leptothorax allardycei (Hymenoptera, Formicidae): time budgets and the evolution of worker reproduction. Behavioral Ecology and Sociobiology, 18, 165–173.

    Article  Google Scholar 

  • Cole, B. J. (1981). Dominance hierarchies in leptothorax ants. New York Science, 212, 83.

    Article  Google Scholar 

  • Conaldi, G., Lomi, A., & Tonellato, M. (2012). Dynamic models of affiliation and the network structure of problem solving in an open source software project. Organizational Research Methods, 15, 385–412.

    Article  Google Scholar 

  • Constantino, R. (1998). Catalog of the living termites of the New World (Insecta: Isoptera). Arquivos de Zoologia, 35, 135–230.

    Article  Google Scholar 

  • Cook, C. N., & Breed, M. D. (2013). Social context influences the initiation and threshold of thermoregulatory behaviour in honeybees. Animal Behaviour, 86, 323–329.

    Article  Google Scholar 

  • Corbara, B., Lachaud, J.-P., & Fresneau, D. (1989). Individual variability, social structure and division of labour in the ponerine ant Ectatomma ruidum Roger (Hymenoptera, Formicidae). Ethology, 82, 89–100.

    Article  Google Scholar 

  • Cornejo, A., Dornhaus, A., Lynch, N., & Nagpal, R. (2014). Task allocation in ant colonies. In F. Kuhn (Ed.), Distributed computing (pp. 46–60). Berlin: Springer.

    Google Scholar 

  • Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 9, 317–365. http://arxiv.org/abs/1105.5449.

  • Di Caro, G., Ducatelle, F., & Gambardella, L. M. (2004, January). AntHocNet: An ant-based hybrid routing algorithm for mobile ad hoc networks. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, et al. (Eds.), Parallel Problem Solving from Nature—PPSN VIII (pp. 461–470). Berlin: Springer.

  • Dornhaus, A. (2008). Specialization does not predict individual efficiency in an ant. PLoS Biology, 6, e285.

    Article  Google Scholar 

  • Dornhaus, A., & Chittka, L. (2004). Information flow and regulation of foraging activity in bumble bees (Bombus spp.). Apidologie, 35, 183–192. doi:10.1051/apido:2004002.

    Article  Google Scholar 

  • Dornhaus, A., & Powell, S. (2009). Foraging and defence strategies. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Dornhaus, A., Powell, S., & Bengston, S. (2012). Group size and its effects on collective organization. Annual Review of Entomology, 57, 123–141. doi:10.1146/annurev-ento-120710-100604.

    Article  Google Scholar 

  • Duarte, A., Weissing, F. J., Pen, I., & Keller, L. (2011). An evolutionary perspective on self-organized division of labor in social insects. Annual Review of Ecology, Evolution, and Systematics, 42, 91–110.

    Article  Google Scholar 

  • Dukas, R., & Kamil, A. C. (2001). Limited attention: The constraint underlying search image. Behavioral Ecology, 12, 192–199.

    Article  Google Scholar 

  • Duong, N., & Dornhaus, A. (2012). Ventilation response thresholds do not change with age or self-reinforcement in workers of the bumble bee Bombus impatiens. Insectes Sociaux, 59, 25–32. doi:10.1007/s00040-011-0183-9.

    Article  Google Scholar 

  • Elgar, M. A., Pagel, M. D., & Harvey, P. H. (1988). Sleep in mammals. Animal Behaviour, 36, 1407–1419.

    Article  Google Scholar 

  • Feinerman, O., & Korman, A. (2013). Theoretical distributed computing meets biology: A review. In C. Hota & P. K. Srimani (Eds.), Distributed computing and internet technology (pp. 1–18). Berlin: Springer.

  • Feldman, M., Papadimitriou, C., Chuang, J., & Stoica, I. (2006). Free-riding and whitewashing in peer-to-peer systems. IEEE Journal on Selected Areas in Communications, 24, 1010–1019. doi:10.1109/JSAC.2006.872882.

    Article  Google Scholar 

  • Fewell, J. H., & Bertram, S. M. (1999). Division of labor in a dynamic environment: Response by honeybees (Apis mellifera) to graded changes in colony pollen stores. Behavioral Ecology and Sociobiology, 46, 171–179.

    Article  Google Scholar 

  • Fewell, J. H., & Winston, M. L. (1992). Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behavioral Ecology and Sociobiology, 30, 387–393.

    Article  Google Scholar 

  • Fjerdingstad, E. J., & Crozier, R. H. (2006). The evolution of worker caste diversity in social insects. The American Naturalist, 167, 390–400.

    Article  Google Scholar 

  • Foukia, N., Hassas, S., Fenet, S., & Albuquerque, P. (2003). Combining immune systems and social insect metaphors: a paradigm for distributed intrusion detection and response system. In E. Horlait, T. Magedanz & R. H. Glitho (Eds.), Mobile Agents for Telecommunication Applications for Telecommunication Applications (pp. 251–264). Berlin: Springer.

  • Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., et al. (2009). Above the clouds: A Berkeley view of cloud computing. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Report UCB/EECS, 28, 13.

  • Franks, N. R., & Sendova-Franks, A. B. (1992). Brood sorting by ants: Distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30, 109–123.

    Article  Google Scholar 

  • Franks, N., & Tofts, C. (1994). Foraging for work–How tasks allocate workers. Animal Behaviour, 48, 470–472. doi:10.1006/anbe.1994.1261.

    Article  Google Scholar 

  • Fraser, V. S., Kaufmann, B., Oldroyd, B. P., & Crozier, R. H. (2000). Genetic influence on caste in the ant Camponotus consobrinus. Behavioral Ecology and Sociobiology, 47, 188–194.

    Article  Google Scholar 

  • Frayret, J.-M., D’Amours, S., & Montreuil, B. (2004). Coordination and control in distributed and agent-based manufacturing systems. Production Planning & Control, 15, 42–54.

    Article  Google Scholar 

  • Fresneau, D. (1984). Développement ovarien et statut social chez une fourmi primitiveNeoponera obscuricornis Emery (Hym. Formicidae, Ponerinae). Insectes Sociaux, 31, 387–402.

    Article  Google Scholar 

  • Fulkerson, B., & Staffend, G. (1997). Decentralized control in the customer focused enterprise. Annals of Operations Research, 75, 325–333.

    Article  Google Scholar 

  • Gadagkar, R., & Joshi, N. V. (1984). Social organisation in the Indian wasp Ropalidia cyathiformis (Fab.)(Hymenoptera: Vespidae). Z Für Tierpsychol, 64, 15–32.

    Article  Google Scholar 

  • Gadau, J., Fewell, J., & Wilson, E. O. (2009). Organization of insect societies: From genome to sociocomplexity. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Georgiou, C., & Shvartsman, A. A. (2011). Cooperative task-oriented computing: Algorithms and complexity. Synthesis Lectures on Distributed Computing Theory, 2, 1–167.

    Article  Google Scholar 

  • Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23, 939–954.

    Article  Google Scholar 

  • Gordon, D. M. (1983). Daily rhythms in social activities of the harvester ant, Pogonomyrmex badius. Psyche: A Journal of Entomology, 90, 413–423. doi:10.1155/1983/60725.

    Article  Google Scholar 

  • Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380, 121–124.

    Article  Google Scholar 

  • Gordon, D. M. (1999). Interaction patterns and task allocation in ant colonies. Basel: Birkhäuser Verlag.

    Book  Google Scholar 

  • Gordon, D. M., & Mehdiabadi, N. J. (1999). Encounter rate and task allocation in harvester ants. Behavioral Ecology and Sociobiology, 45, 370–377.

    Article  Google Scholar 

  • Grimaldi, D. A., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press.

    Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.

    Article  Google Scholar 

  • Gronenberg, W., & Couvillon, M. J. (2010). Brain composition and olfactory learning in honey bees. Neurobiology of Learning and Memory, 93, 435–443. doi:10.1016/j.nlm.2010.01.001.

    Article  Google Scholar 

  • Hamermesh, D. S. (1990). Shirking or productive schmoozing: Wages and the allocation of time at work. Cambridge, MA: National Bureau of Economic Research.

    Google Scholar 

  • Helbing, D., & Balietti, S. (2011). From social simulation to integrative system design. The European Physical Journal Special Topics, 195, 69–100. doi:10.1140/epjst/e2011-01402-7.

    Article  Google Scholar 

  • Herbers, J. M. (1983). Social organization in Leptothorax ants: Within-And between-species patterns. Psyche: A Journal of Entomology, 90, 361–386.

    Article  Google Scholar 

  • Hillis, N., Charbonneau, D., & Dornhaus, A. (In prep.). Are “lazy” ants selfish? Testing whether inactive ant workers invest more in their own reproduction.

  • Holden, C. (1989). Entomologists wane as insects wax. Science, 246, 754–756. doi:10.1126/science.2814497.

    Article  Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge, MA: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • Huang, Z.-Y., & Robinson, G. E. (1996). Regulation of honey bee division of labor by colony age demography. Behavioral Ecology and Sociobiology, 39, 147–158. doi:10.1007/s002650050276.

    Article  Google Scholar 

  • Huang, Z.-Y., Robinson, G. E., & Borst, D. W. (1994). Physiological correlates of division of labor among similarly aged honey bees. Journal of Comparative Physiology A, 174, 731–739.

    Article  Google Scholar 

  • Ishii, Y., & Hasgeawa, E. (2013). The mechanism underlying the regulation of work-related behaviors in the monomorphic ant, Myrmica kotokui. Journal of Ethology, 31, 61–69.

    Article  Google Scholar 

  • Itoh, H. (1992). Journal of Law, Economics, & Organization. Cooperation in hierarchical organizations: An incentive perspective, 8, 321–345.

  • Jandt, J. M., & Dornhaus, A. (2014). Bumblebee response thresholds and body size: Does worker diversity increase colony performance? Animal Behaviour, 87, 97–106.

    Article  Google Scholar 

  • Jandt, J. M., & Dornhaus, A. (2011). Competition and cooperation: Bumblebee spatial organization and division of labor may affect worker reproduction late in life. Behavioral Ecology and Sociobiology, 65, 2341–2349.

    Article  Google Scholar 

  • Jandt, J. M., & Dornhaus, A. (2009). Spatial organization and division of labour in the bumblebee Bombus impatiens. Animal Behaviour, 77, 641–651.

    Article  Google Scholar 

  • Jandt, J., Robins, N., Moore, R., & Dornhaus, A. (2012). Individual bumblebees vary in response to disturbance: A test of the defensive reserve hypothesis. Insectes Sociaux, 59, 313–321.

    Article  Google Scholar 

  • Jeanne, R. L. (1999). Group size, productivity, and information flow in social wasps. In D. C. Detrain, D. J. L. Deneubourg, & P. D. J. M. Pasteels (Eds.), Information processing in social insects (pp. 3–30). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Jeanne, R. L. (1986). The organization of work in polybia occidentalis: Costs and benefits of specialization in a social wasp. Behavioral Ecology and Sociobiology, 19, 333–341. doi:10.2307/4599967.

    Article  Google Scholar 

  • Johnson, B. R. (2008). Global information sampling in the honey bee. Naturwissenschaften, 95, 523–530.

    Article  Google Scholar 

  • Johnson, B. R. (2003). Organization of work in the honeybee: A compromise between division of labour and behavioural flexibility. Proceedings of the Royal Society of London B: Biological Sciences, 270, 147–152. doi:10.1098/rspb.2002.2207.

    Article  Google Scholar 

  • Johnson, B. R. (2002). Reallocation of labor in honeybee colonies during heat stress: The relative roles of task switching and the activation of reserve labor. Behavioral Ecology and Sociobiology, 51, 188–196. doi:10.1007/s00265-001-0419-1.

    Article  Google Scholar 

  • Johnson, S. (2012). Emergence: The connected lives of ants, brains, cities, and software. New York: Simon and Schuster.

    Google Scholar 

  • Johnston, A. B., & Wilson, E. O. (1985). Correlates of variation in the major/minor ratio of the ant, Pheidole dentata (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 78, 8–11.

    Article  Google Scholar 

  • Julian, G. E., & Fewell, J. H. (2004). Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Animal Behaviour, 68, 1–8.

    Article  Google Scholar 

  • Karsai, I., & Wenzel, J. W. (2000). Organization and regulation of nest construction behavior in Metapolybia wasps. Journal of Insect Behavior, 13, 111–140. doi:10.1023/A:1007771727503.

    Article  Google Scholar 

  • Kauffman, S. A. (1993). The origins of order: Self organization and selection in evolution. New York: Oxford University Press.

    Google Scholar 

  • Kolmes, S. A. (1986). Age polyethism in worker honey bees. Ethology, 71, 252–255.

    Article  Google Scholar 

  • Kwapich, C. L., & Tschinkel, W. R. (2013). Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behavioral Ecology and Sociobiology, 67, 2011–2027.

    Article  Google Scholar 

  • Lanan, M. C., Dornhaus, A., Jones, E. I., Waser, A., & Bronstein, J. L. (2012). The trail less traveled: Individual decision-making and its effect on group behavior. PLoS One, 7(10), e47976. doi:10.1371/journal.pone.0047976.

  • Levchuk, G. M., Levchuk, Y. N., Luo, J., Pattipati, K. R., & Kleinman, D. L. (2002). Normative design of organizations. I. Mission planning. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 32(3), 346–359. doi:10.1109/TSMCA.2002.802819.

  • Li, F., & Tolley, D. L. (2007). Long-run incremental cost pricing based on unused capacity. IEEE Transactions on Power Systems, 22, 1683–1689.

    Article  Google Scholar 

  • Lindauer, M. (1952). Ein beitrag zur frage der arbeitsteilung im bienenstaat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 34, 299–345.

    Google Scholar 

  • Lindbeck, A., & Snower, D. J. (1996). Reorganization of firms and labor-market inequality. The American Economic Review, 86, 315–321. doi:10.2307/2118144.

    Google Scholar 

  • Maistrello, L., & Sbrenna, G. (1999). Behavioural differences between male and female replacement reproductives in Kalotermes flavicollis (Isoptera, Kalotermitidae). Insectes Sociaux, 46, 186–191.

    Article  Google Scholar 

  • Medawar, P. B. (1962). D’Arcy Thompson and growth and form. Perspectives in Biology and Medicine, 5, 220–232.

    Article  Google Scholar 

  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253. doi:10.1006/cogp.2000.0736.

    Article  Google Scholar 

  • Mersch, D. P., Crespi, A., & Keller, L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science, 340, 1090–1093. doi:10.1126/science.1234316.

    Article  Google Scholar 

  • Michener, C. D. (1964). Reproductive efficiency in relation to colony size in hymenopterous societies. Insectes Sociaux, 11, 317–341.

    Article  Google Scholar 

  • Michener, C. D. (2000). The bees of the world. Baltimore, MD: JHU Press.

    Google Scholar 

  • Möglich, M. H. J., & Hölldobler, B. (1974). Social carrying behavior and division of labor during nest moving in ants. Psyche: A Journal of Entomology, 81, 219–236. doi:10.1155/1974/25763.

    Article  Google Scholar 

  • Moore, D. (2001). Honey bee circadian clocks: Behavioral control from individual workers to whole-colony rhythms. Journal of Insect Physiology, 47, 843–857.

    Article  Google Scholar 

  • Moore, D., Angel, J. E., Cheeseman, I. M., Fahrbach, S. E., & Robinson, G. E. (1998). Timekeeping in the honey bee colony: Integration of circadian rhythms and division of labor. Behavioral Ecology and Sociobiology, 43(3), 147–160.

    Article  Google Scholar 

  • Mullen, R. J., Monekosso, D., Barman, S., & Remagnino, P. (2009). A review of ant algorithms. Expert Systems with Applications, 36, 9608–9617.

    Article  Google Scholar 

  • Murakami, T., Higashi, S., & Windsor, D. (2000). Mating frequency, colony size, polyethism and sex ratio in fungus-growing ants (Attini). Behavioral Ecology and Sociobiology, 48, 276–284.

    Article  Google Scholar 

  • Muscedere, M. L., Willey, T. A., & Traniello, J. F. A. (2009). Age and task efficiency in the ant Pheidole dentata: Young minor workers are not specialist nurses. Animal Behaviour, 77, 911–918. doi:10.1016/j.anbehav.2008.12.018.

    Article  Google Scholar 

  • Naug, D. (2009). Structure and resilience of the social network in an insect colony as a function of colony size. Behavioral Ecology and Sociobiology, 63, 1023–1028. doi:10.1007/s00265-009-0721-x.

    Article  Google Scholar 

  • Navlakha, S., & Bar-Joseph, Z. (2014). Distributed information processing in biological and computational systems. Communications of the ACM, 58, 94–102.

    Article  Google Scholar 

  • O’Donnell, S., & Bulova, S. J. (2007). Worker connectivity: A review of the design of worker communication systems and their effects on task performance in insect societies. Insectes Sociaux, 54, 203–210.

    Article  Google Scholar 

  • O’Donnell, S., & Foster, R. L. (2001). Thresholds of response in nest thermoregulation by worker bumble bees, Bombus bifarius nearcticus (Hymenoptera: Apidae). Ethology, 107, 387–399.

    Article  Google Scholar 

  • O’Donnell, S., & Jeanne, R. L. (1995). Implications of senescence patterns for the evolution of age polyethism in eusocial insects. Behavioral Ecology, 6, 269–273.

    Article  Google Scholar 

  • Oldroyd, B. P., & Thompson, G. J. (2006). Behavioural genetics of the honey bee Apis mellifera. In S. J. Simpson (Ed.), Advances in insect physiology (pp. 1–49). London: Academic Press.

    Google Scholar 

  • Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95, 215–233. doi:10.1109/JPROC.2006.887293.

    Article  Google Scholar 

  • Oster, G. F., & Wilson, E. O. (1978). Caste and ecology in the social insects. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Page, R. E., Jr, & Peng, C. Y.-S. (2001). Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology, 36, 695–711. doi:10.1016/S0531-5565(00)00236-9.

  • Pankiw, T., & Page, R. E., Jr. (1999). he effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology A, 185, 207–213. doi:10.1007/s003590050379.

  • Pankiw, T., & Page, R. E., Jr. (2001). Brood pheromone modulates honeybee (Apis mellifera L.) sucrose response thresholds. Behavioral Ecology and Sociobiology, 49, 206–213. doi:10.1007/s002650000282.

  • Pankiw, T., Page, R. E., Jr, & Fondrk, M. K. (1998). Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behavioral Ecology and Sociobiology, 44, 193–198. doi:10.1007/s002650050531.

  • Parunak, H. V. D. (1997). “Go to the ant”: Engineering principles from natural multi-agent systems. Annals of Operations Research, 75, 69–101.

    Article  Google Scholar 

  • Passera, L., Roncin, E., Kaufmann, B., & Keller, L. (1996). Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379, 630–631. doi:10.1038/379630a0.

    Article  Google Scholar 

  • Peeters, C., & Ito, F. (2001). Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annual Review of Entomology, 46, 601–630. doi:10.1146/annurev.ento.46.1.601.

    Article  Google Scholar 

  • Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N., & Dornhaus, A. (2012). How is activity distributed among and within tasks in Temnothorax ants? Behavioral Ecology and Sociobiology, 66(10), 1407–1420.

    Article  Google Scholar 

  • Poff, C., Nguyen, H., Kang, T., & Shin, M. C. (2012). Efficient tracking of ants in long video with GPU and interaction. Breckenridge, CO: Inderscience Publishers.

    Book  Google Scholar 

  • Porter, S. D., & Tschinkel, W. R. (1985). Fire ant polymorphism: The ergonomics of brood production. Behavioral Ecology and Sociobiology, 16, 323–336.

    Article  Google Scholar 

  • Powell, S. (2008). Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Functional Ecology, 22, 902–911.

    Article  Google Scholar 

  • Powell, S., & Franks, N. R. (2006). Ecology and the evolution of worker morphological diversity: A comparative analysis with Eciton army ants. Functional Ecology, 20, 1105–1114.

    Article  Google Scholar 

  • Powell, S., & Tschinkel, W. R. (1999). Ritualized conflict in Odontomachus brunneus and the generation of interaction-based task allocation: a new organizational mechanism in ants. Animal Behaviour, 58, 965–972.

    Article  Google Scholar 

  • Pratt, S. C., Mallon, E. B., Sumpter, D. J., & Franks, N. R. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52, 117–127.

    Article  Google Scholar 

  • Pugh, D. S., Hickson, D. J., & Hinings, C. R. (1969). An empirical taxonomy of structures of work organizations. Administrative Science Quarterly, 14, 115–126. doi:10.2307/2391367.

    Article  Google Scholar 

  • Ravary, F., Lecoutey, E., Kaminski, G., Châline, N., & Jaisson, P. (2007). Individual experience alone can generate lasting division of labor in ants. Current Biology, 17(15), 1308–1312.

    Article  Google Scholar 

  • Retana, J., & Cerdá, X. (1990). Social organization of cataglyphis cursor ant colonies (Hymenoptera, Formicidae): Inter-, and intraspecific comparisons. Ethology, 84, 105–122.

    Article  Google Scholar 

  • Rivas-Ubach, A., Sardans, J., Pérez-Trujillo, M., Estiarte, M., & Peñuelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences, 109(11), 4181–4186.

    Article  Google Scholar 

  • Rivera, M. D., Donaldson-Matasci, M., & Dornhaus, A. (2015). Quitting time: When do honey bee foragers decide to stop foraging on natural resources? Frontiers in Ecology and Evolution, 3, 50.

    Article  Google Scholar 

  • Robinson, E. J., Feinerman, O., & Franks, N. R. (2009). Flexible task allocation and the organization of work in ants. Proceedings of the Royal Society B: Biological Sciences, 276, 4373–4380.

    Article  Google Scholar 

  • Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37, 637–665.

    Article  Google Scholar 

  • Robinson, G. E., Grozinger, C. M., & Whitfield, C. W. (2005). Sociogenomics: Social life in molecular terms. Nature Reviews Genetics, 6, 257–270.

    Article  Google Scholar 

  • Robinson, G. E., & Huang, Z.-Y. (1998). Colony integration in honey bees: Genetic, endocrine and social control of division of labor. Apidologie, 29, 159–170.

    Article  Google Scholar 

  • Robson, S. K., & Traniello, J. F. A. (1999). Key individuals and the organisation of labor in ants. In D. C. Detrain, D. J. L. Deneubourg, & P. D. J. M. Pasteels (Eds.), Information processing in social insects (pp. 239–259). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345, 795–799.

    Article  Google Scholar 

  • Rueppell, O., Bachelier, C., Fondrk, M. K., & Page, R. E, Jr. (2007). Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Experimental Gerontology, 42, 1020–1032.

    Article  Google Scholar 

  • Samways, M. J. (1993). Insects in biodiversity conservation: Some perspectives and directives. Biodiversity and Conservation, 2, 258–282.

    Article  Google Scholar 

  • Schmid-Hempel, P. (1990). Reproductive competition and the evolution of work load in social insects. The American Naturalist, 135, 501–526.

    Article  Google Scholar 

  • Schmid-Hempel, P. (1992). Worker castes and adaptive demography. Journal of Evolutionary Biology, 5, 1–12.

    Article  Google Scholar 

  • Schwander, T., Rosset, H., & Chapuisat, M. (2005). Division of labour and worker size polymorphism in ant colonies: The impact of social and genetic factors. Behavioral Ecology and Sociobiology, 59, 215–221.

    Article  Google Scholar 

  • Seeley, T. (1992). The tremble dance of the honey-bee–Message and meanings. Behavioral Ecology and Sociobiology, 31, 375–383.

    Article  Google Scholar 

  • Seeley, T. D. (2009). The wisdom of the hive: The social physiology of honey bee colonies. New York: Harvard University Press.

    Google Scholar 

  • Seeley, T. D. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11, 287–293. doi:10.1007/BF00299306.

    Article  Google Scholar 

  • Sendova-Franks, A. B., & Franks, N. R. (1999). Self-assembly, self-organization and division of labour. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 1395–1405.

    Article  Google Scholar 

  • Sendova-Franks, A. B., Hayward, R. K., Wulf, B., Klimek, T., James, R., Planqué, R., et al. (2010). Emergency networking: Famine relief in ant colonies. Animal Behaviour, 79(2), 473–485.

    Article  Google Scholar 

  • Sendova-Franks, F. (1995). Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour. Animal Behaviour, 50, 121.

    Article  Google Scholar 

  • Siegel, J. M. (2008). Do all animals sleep? Trends in Neurosciences, 31, 208–213. doi:10.1016/j.tins.2008.02.001.

    Article  Google Scholar 

  • Siegel, J. M. (2001). The REM sleep-memory consolidation hypothesis. Science, 294, 1058–1063.

    Article  Google Scholar 

  • Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. A. and C. Black.

  • Spaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees. The Journal of Experimental Biology, 206, 3447–3453.

    Article  Google Scholar 

  • Spaethe, J., & Weidenmüller, A. (2002). Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Sociaux, 49, 142–146.

    Article  Google Scholar 

  • Sullivan, J. P., Jassim, O., Fahrbach, S. E., & Robinson, G. E. (2000). Juvenile hormone paces behavioral development in the adult worker honey bee. Hormones and Behavior, 37, 1–14.

    Article  Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Denuebourg, J.-N. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London Series B: Biological sciences, 265, 327–332. doi:10.1098/rspb.1998.0299.

    Article  Google Scholar 

  • Tschinkel, W. R. (1999). Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: Distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecological Entomology, 24, 222–237.

    Article  Google Scholar 

  • Uehara, E. (1990). Dual exchange theory, social networks, and informal social support. American Journal of Sociology, 96, 521–557.

    Article  Google Scholar 

  • Valkenburg, P. M., Peter, J., & Schouten, A. P. (2006). Friend networking sites and their relationship to adolescents’ well-being and social self-esteem. Cyberpsychology & Behavior, 9, 584–590. doi:10.1089/cpb.2006.9.584.

    Article  Google Scholar 

  • Varia, J. (2010). Architecting for the cloud: Best practices. http://jineshvaria.s3.amazonaws.com/public/cloudbestpractices-jvaria.pdf.

  • Waddington, S. J., & Hughes, W. O. H. (2010). Waste management in the leaf-cutting ant Acromyrmex echinatior: The role of worker size, age and plasticity. Behavioral Ecology and Sociobiology, 64, 1219–1228. doi:10.1007/s00265-010-0936-x.

    Article  Google Scholar 

  • Waibel, M., Floreano, D., Magnenat, S., & Keller, L. (2006). Division of labour and colony efficiency in social insects: Effects of interactions between genetic architecture, colony kin structure and rate of perturbations. Proceedings of the Royal Society B: Biological Sciences, 273, 1815–1823.

    Article  Google Scholar 

  • Waser, N. M., Chittka, L., Price, M. V., Williams, N. M., & Ollerton, J. (1996). Generalization in pollination systems, and why it matters. Ecology, 77(4), 1043–1060. doi:10.2307/2265575.

  • Waters, J. S., & Fewell, J. H. (2012). Information processing in social insect networks. PLoS One, 7, e40337. doi:10.1371/journal.pone.0040337.

    Article  Google Scholar 

  • Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review of Plant Biology, 54, 669–689.

    Article  Google Scholar 

  • Weidenmuller, A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behavioral Ecology, 15, 120–128. doi:10.1093/beheco/arg101.

    Article  Google Scholar 

  • Weidenmüller, A., Kleineidam, C., & Tautz, J. (2002). Collective control of nest climate parameters in bumblebee colonies. Animal Behaviour, 63, 1065–1071.

    Article  Google Scholar 

  • Weidenmüller, A., Mayr, C., Kleineidam, C. J., & Roces, F. (2009). Preimaginal and adult experience modulates the thermal response behavior of ants. Current Biology, 19, 1897–1902.

    Article  Google Scholar 

  • Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594–610.

    Article  Google Scholar 

  • Wenseleers, T., & Ratnieks, F. L. (2006). Comparative analysis of worker reproduction and policing in eusocial Hymenoptera supports relatedness theory. The American Naturalist, 168, E163–E179.

    Article  Google Scholar 

  • Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal behaviour: A promising tool for the study of sociality. Animal Behaviour, 75, 333–344. doi:10.1016/j.anbehav.2007.06.020.

    Article  Google Scholar 

  • Wilson, E. O. (1980a). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology, 7, 143–156. doi:10.1007/BF00299520.

    Article  Google Scholar 

  • Wilson, E. O. (1980b). Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology, 7, 157–165. doi:10.1007/BF00299521.

    Article  Google Scholar 

  • Wilson, E. O. (1985). The sociogenesis of insect colonies. Science, 228, 1489–1495.

    Article  Google Scholar 

  • Wilson, E. O. (1987). Causes of ecological success: The case of the ants. Journal of Animal Ecology, 56, 1–9.

    Article  Google Scholar 

  • Winston, M. L. (1991). The biology of the honey bee. New York: Harvard University Press.

    Google Scholar 

  • Woyciechowski, M., & Kozlowski, J. (1998). Division of labor by division of risk according to worker life expectancy in the honey bee (Apis mellifera L.). Apidologie, 29, 191–205.

    Article  Google Scholar 

  • Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Serugendo, G. D. M., et al. (2015). Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 17, 236–252.

    Article  Google Scholar 

  • Zepelin, H. (1994). Mammalian sleep. In S. H. Sheldon, M. H. Kryger, R. Ferber & D. Gozal (Eds.), Principles and Practice of sleep medicine. Darien, IL: The American Academy of Sleep Medicine (AASM)

Download references

Acknowledgments

We thank the entire Dornhaus lab for their help in discussing and strengthening the ideas explored herein, and for their ongoing feedback. We also thank Jennifer Fewell for organizing a special issue of the Journal of Bioeconomics on biomimicry as well as for her feedback and support. Research supported through the GIDP-EIS and EEB Department at University of Arizona, as well as NSF grants no. IOS-1045239, IOS- 1455983, and DEB- 1262292 (to A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Charbonneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charbonneau, D., Dornhaus, A. When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J Bioecon 17, 217–242 (2015). https://doi.org/10.1007/s10818-015-9205-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10818-015-9205-4

Keywords

Navigation