Skip to main content
Log in

SAMPL4, a blind challenge for computational solvation free energies: the compounds considered

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

For the fifth time I have provided a set of solvation energies (1 M gas to 1 M aqueous) for a SAMPL challenge. In this set there are 23 blind compounds and 30 supplementary compounds of related structure to one of the blind sets, but for which the solvation energy is readily available. The best current values of each compound are presented along with complete documentation of the experimental origins of the solvation energies. The calculations needed to go from reported data to solvation energies are presented, with particular attention to aspects which are new to this set. For some compounds the vapor pressures (VP) were reported for the liquid compound, which is solid at room temperature. To correct from VPsubcooled liquid to VPsublimation requires ΔSfusion, which is only known for mannitol. Estimated values were used for the others, all but one of which were benzene derivatives and expected to have very similar values. The final compound for which ΔSfusion was estimated was menthol, which melts at 42 °C so that modest errors in ΔSfusion will have little effect. It was also necessary to look into the effects of including estimated values of ΔCp on this correction. The approximate sizes of the effects of inclusion of ΔCp in the correction from VPsubcooled liquid to VPsublimation were estimated and it was noted that inclusion of ΔCp invariably makes ΔGS more positive. To extend the set of compounds for which the solvation energy could be calculated we explored the use of boiling point (b.p.) data from Reaxys/Beilstein as a substitute for studies of the VP as a function of temperature. B.p. data are not always reliable so it was necessary to develop a criterion for rejecting outliers. For two compounds (chlorinated guaiacols) it became clear that inclusion represented overreach; for each there were only two independent pressure, temperature points, which is too little for a trustworthy extrapolation. For a number of compounds the extrapolation from lowest temperature at which the VP was reported to 25 °C was long (sometimes over 100°) so that it was necessary to consider whether ΔCp might have significant effects. The problem is that there are no experimental values and possible intramolecular hydrogen bonds make estimation uncertain in some cases. The approximate sizes of the effects of ΔCp were estimated, and it was noted that inclusion of ΔCp in the extrapolation of VP down to room temperature invariably makes ΔGs more negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) J Comput Aided Mol Des 24:259–279

    CAS  Google Scholar 

  2. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Pande VS (2008) J Med Chem 51:769–779

    CAS  Google Scholar 

  3. Geballe MT, Guthrie JP (2012) J Comput Aided Mol Des 26:489–496

    CAS  Google Scholar 

  4. Guthrie JP (2009) J Phys Chem B 113: 4501–4507

    Google Scholar 

  5. Dominy BN (2008) Curr Pharm Biotechnol 9:87–95

    CAS  Google Scholar 

  6. Raha K, Merz K (2005) Ann Rep Comput Chem 1:113–130

    CAS  Google Scholar 

  7. Shirts MR, Mobley DL, Chodera JD (2007) Ann Rep Comput Chem 3:41–59

    CAS  Google Scholar 

  8. Moult J (2005) Curr Opin Struct Biol 15:285–289

    CAS  Google Scholar 

  9. Battey JND, Kop J, Bordoli L, Read RJ, Clarke ND, Schwede T (2007) Proteins 69(Suppl 8):68–82

    CAS  Google Scholar 

  10. Ribeiro da Silva MAV, Monte MJS, Ribeiro JR (1999) J Chem Thermodynam 31:1093–1107

    CAS  Google Scholar 

  11. Burkinshaw PM, Mortimer CT (1984) J Chem Soc Dalton Trans: 75–77

  12. De Kruif CG (1980) J Chem Thermodynam 12:243–248

    Google Scholar 

  13. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  14. Braham JM (1919) J Am Chem Soc 41:1707–1718

    CAS  Google Scholar 

  15. Robinson RA, Stokes RH (1961) J Phys Chem 65:1954–1958

    CAS  Google Scholar 

  16. Chickos JS, Acree WE (2003) Thermochim Acta 395:59–113

    CAS  Google Scholar 

  17. Yalkowsky SH (1979) Ind Eng Chem Fundam 18:108–111

    CAS  Google Scholar 

  18. Domalski E, Hearing E (1996) J Phys Chem Ref Data 25 1-525 1996 25:1–525

  19. Guthrie JP (1986) Can J Chem 64:635–640

    CAS  Google Scholar 

  20. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York

    Google Scholar 

  21. Benson SW, Buss JH (1958) J Chem Phys 29:546–572

    CAS  Google Scholar 

  22. Guthrie JP, Taylor KF (1983) Can J Chem 61:602–607

    CAS  Google Scholar 

  23. Clarke ECW, Glew DN (1966) TRANS FAR SOC 62 539 1966 NE TC

  24. Guthrie JP, Taylor KF (1983) Can J Chem 62:363–372

    Google Scholar 

  25. PCMODEL (1993) Serena Software Box 3076 Bloomington IN

  26. Llinas A, Glen RC, Goodman JM (2008) J Chem Inf Model 48:1289–1303

    CAS  Google Scholar 

  27. Mo O, Yanez M, Roux MV, Jimenez P, Davalos JZ, Ribeiro da Silva MAV, Ribeiro da Silva M, Matos MAR, Amaral L, Sanchez-Migallon A, Cabildo P, Claramunt R, Elguero J, Liebman JF (1999) J Phys Chem A 103:9336–9344

    CAS  Google Scholar 

  28. Davalos JZ, Table 5. In Guthrie, J. P., Ed. 2013

  29. Lei Y, Wania F, Shiu W, Boocock D (1999) J Chem Eng Data 44:200–202

    Google Scholar 

  30. Deming WE (1964) Statistical adjustment of data. Dover, New York

    Google Scholar 

  31. Sands DE (1977) J Chem Educ 54: 90–94

    Google Scholar 

  32. de Levie R (2012) J Chem Educ 89:68–78

    Google Scholar 

  33. Karl T, Yertzian C, Jordan A, Lindingner W (2003) Int J Mass Spectrom 233:383–393

    Google Scholar 

  34. Bird CL (1954) J Soc Dyers Colour 70:68–77

    CAS  Google Scholar 

  35. Bradley RS, Bird CL, Jones F (1956) Nature (London) 178:998–999

    CAS  Google Scholar 

  36. Bradley RS, Bird CL, Jones F (1960) Trans Faraday Soc 56:23–28

    CAS  Google Scholar 

  37. Andrews LJ, Keefer RM (1950) JACS 72 5034 1950 TT

  38. Verevkin S, Ebenhoch J (1999) Struct Chem 10:401–409

    CAS  Google Scholar 

  39. Lun R, Shiu W, Mackay D (1995) J Chem Eng Data 40:959–962

    CAS  Google Scholar 

  40. Varfolomeev MA, Abaidullina DI, Solomonov BN, Verevkin SP, Emelyanenko VN (2010) J Phys Chem B 114:16503–16516

    CAS  Google Scholar 

  41. Kemp MD, Goldhagen S, Zihlman FA (1957) J Phys Chem 61:240–242

    CAS  Google Scholar 

  42. Fischer RG, Ballschmiter K (1998) Chemosphere 36:2891–2901

    CAS  Google Scholar 

  43. Baughman GL, Weber EJ (1991) Dyes Pigm 16:261–271

    CAS  Google Scholar 

  44. Hoten M, Okada S (1967) Sen’i Gakkaishi 23:321–326

    CAS  Google Scholar 

  45. Hou M, Baughman GL, Perenich TA (1991) Dyes Pigm 16:291–297

    CAS  Google Scholar 

  46. Kuroiwa S, Ogasaawa S (1973) Nihon Kagaku Kaishi: 1738–1743

  47. Patterson D, Sheldon RP (1960) J Soc Dyers Colour 76:178–181

    CAS  Google Scholar 

  48. Tsuruoka S, Kojima H (1968) Seni Gakkaishi 24:35–42

    CAS  Google Scholar 

  49. Nishida K, Ishihara E, Osaka T, Koukitu M (1977) J Soc Dyers Colour 93:52–54

    CAS  Google Scholar 

  50. Shimizu T, Ohkubo S, Kimura M, Tabata I, Hori T (1987) J Soc Dyers Colour 103:132–137

    CAS  Google Scholar 

  51. Cabani S, Conti G, Lepori L (1971) Trans Faraday Soc 67:1943–1950

    Google Scholar 

  52. Ondo D, Dohnal V (2007) Fluid Phase Equilib 262:121–136

    CAS  Google Scholar 

  53. Carr PW, Hussam A (1985) Anal Chem 57:793–801

    Google Scholar 

  54. Amoore JE, Buttery RG (1978) Chem Senses Flavours 3:57–71

    CAS  Google Scholar 

  55. Kolb B, Welter C, Bichler C (1992) Chromatographia 34:235–240

    CAS  Google Scholar 

  56. McDowell W, Weingarten R (1969) J Soc Dyers Colour 69:589–597

    Google Scholar 

  57. Sawanoi Y, Shimbo Y, Tabata I, Hisada K, Hori T (2002) Dyes Pigm 52:29–35

    CAS  Google Scholar 

  58. Frank TC, Donate FA, Merenov AS, VonWald GA, Alstad BJ, Green CW, Thyne TC (2007) Ind Eng Chem Res 46:3774–3786

    CAS  Google Scholar 

  59. Tewari YB, Miller MM, Wasik SP, Martire DE (1982) J Chem Eng Data 27:451–454

    CAS  Google Scholar 

  60. Forziati AF, Norris WR, Rossini FD (1949) J Res Natl Bur Stand (US) 43:555-63; Research Paper No. 2049

    Google Scholar 

  61. Ashworth RA, Howe GB, Mullins ME, Rogers TN (1988) J Hazard Mater 18:25–36

    CAS  Google Scholar 

  62. Varhanickova D, Lee SC, Shiu W, Mackay D (1995) J Chem Eng Data 40:620–622

    CAS  Google Scholar 

  63. Sagebiel JC, Seiber JN, Woodrow JE (1992) Chemosphere 25:1763–1768

    CAS  Google Scholar 

  64. Hovorka S, Dohnal V, Roux AH, Roux-Desgranges G (2002) Fluid Phase Equilib 201:135–164

    CAS  Google Scholar 

  65. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A (1996) J Chem Eng Data 41:1255–1268

    CAS  Google Scholar 

  66. Johanson G, Dynesius B (1988) Br J Ind Med 45:561–564

    CAS  Google Scholar 

  67. Varhanickova D, Shiu W, Mackay D (1995) J Chem Eng Data 40:448–451

    CAS  Google Scholar 

  68. Terres E, Gebert F, Hulsemann H, Petereit H, Toepsch H, Ruppert W (1955) Brennstoff-Chemie 36:272–274

    CAS  Google Scholar 

  69. Biddiscombe DP, Handley R, Harrop D, Head AJ, Lewis GB, Martin JF, Sprake CHS (1963) J Chem Soc: 5764–5768

  70. Ji C, Day SE, Ortega SA, Beall GW (2008) J Chem Eng Data 53:1093–1097

    CAS  Google Scholar 

  71. Tam D, Varhanickova D, Shiu W, Mackay D (1994) J Chem Eng Data 39:83–86

    CAS  Google Scholar 

  72. Barrera-Garcia VD, Gougeon RD, Voilley A, Chassagane D (2006) J Agric Food Chem 54:3082–3089

    Google Scholar 

  73. Ma K, Shiu W, Mackay D (1993) J Chem Eng Data 38:364–366

    CAS  Google Scholar 

  74. Verevkin SP, Emel’yanenko VN (2007) J Chem Eng Data 52:499–510

    CAS  Google Scholar 

  75. Nametkin SS, Bokarev KS, Mel’nikov NN (1951) Dokl Akad Nauk SSSR 77:293–296

    CAS  Google Scholar 

  76. Peratoner A (1898) Gaz Chim Ital 28:197–240

    CAS  Google Scholar 

  77. Aulin-Erdtman G, Sanden R (1968) Acta Chem Scand 22:1187–1209

    CAS  Google Scholar 

  78. Azadi P, Carrasquillo-Flores R, Pagan-Torres YJ, Guerbuez EI, Farnood R, Dumesic JA (2012) Green Chem 14:1573–1576

    CAS  Google Scholar 

  79. Baker SB, Hibbert H (1948) J Am Chem Soc 70:63–67

    CAS  Google Scholar 

  80. Claisen L, Tietze E (1926) Justus Liebigs Ann Chem 449:81–101

    CAS  Google Scholar 

  81. Coscia CJ, Schubert WJ, Nord FF (1961) J Org Chem 26:5085–5091

    CAS  Google Scholar 

  82. Davydova GV, Lozanova AV, Shorygina NN (1972) Izv Akad Nauk SSSR, Ser Khim: 1837–1840

  83. Gauthier B (1945) Ann Chim Appl 20:581–659

    CAS  Google Scholar 

  84. Irvine WJ, Saxby MJ (1968) Phytochemistry 7:277–281

    CAS  Google Scholar 

  85. Koutek B, Setinek K (1968) Collect Czech Chem Commun 33:866–879

    CAS  Google Scholar 

  86. Krajniak ER, Ritchie E, Taylor WC (1973) Aust J Chem 26:1337–1351

    CAS  Google Scholar 

  87. Kuwatsuka S, Casida JE (1965) J Agric Food Chem 13:528–533

    CAS  Google Scholar 

  88. Nose A, Kudo T (1990) Chem Pharm Bull 38:1720–1723

    CAS  Google Scholar 

  89. Palfray VL, Sabetay S (1938) Bull Soc Chim Fr Mem 5:1423–1425

    CAS  Google Scholar 

  90. Pearl IA (1959) J Org Chem 24:736–740

    CAS  Google Scholar 

  91. Pepper JM, Steck W (1963) Can J Chem 41:2867–2875

    CAS  Google Scholar 

  92. Rottendorf H, Sternhell S (1963) Aust J Chem 16:647–657

    CAS  Google Scholar 

  93. Turunen J (1962) Suom Kemistil B 35B:235–237

    CAS  Google Scholar 

  94. Wolinski J, Uliasz A, Borkowska M (1971) Acta Pol Pharm 28:5–10

    CAS  Google Scholar 

  95. Wolinski J, Uliasz A, Borkowska M (1972) Acta Pol Pharm 29:231–234

    CAS  Google Scholar 

  96. Jona T, Pozzi GB (1911) Gazz Chim Ital 41:722–737

    CAS  Google Scholar 

  97. Meyer H (1924) Z Anal Chem 64:72–81

    CAS  Google Scholar 

  98. Paty M, Quelet R (1944) Bull Soc Chim Fr 11:505–511

    CAS  Google Scholar 

  99. Turski JS, Piotrowski A, Winawer S (1927) Przem Chem 11:365–370

    CAS  Google Scholar 

  100. Reza J, Trejo, A (2004) Chemosphere 56:537–547

    Google Scholar 

  101. Hoyer H, Peperle W (1958) Zeitschrift fuer Elektrochimie und Angewandte Physikalische Chemie 62:61–66

    CAS  Google Scholar 

  102. Nass K, Lenoir D, Kettrup A (1995) Angew Chem Int Ed Engl 34:1735–1736

    CAS  Google Scholar 

  103. Bergstrom CAS, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P (2003) J Med Chem 46:558–570

    Google Scholar 

  104. (Centrafarm Farmacentische Produkten Comm. Venn..) Tertiary alcohols and their derivatives. NL7000497, 1970

  105. Davis MA (1971) Antidepressant amitriptyline and related compounds. CA875549

  106. Hnevsova-Seidlova V, Protiva M (1962) Cesko-Slov Farm 10:459–464

    CAS  Google Scholar 

  107. Pallos L (1969) Dibenzocycloheptene. DE1920070A

  108. Protiva M, Seidlova V (1964) 1-(3-Aminopropylidene)-2,3:6,7-dibenzosuberans. CS109489

  109. Protiva M, Seidlova V (1970) Antidepressant dibenzo[a,d]cycloheptene derivatives. CS136585

  110. Seidlova V, Protiva M (1967) Collect Czech Chem Commun 32:2826–2839

    CAS  Google Scholar 

  111. Villani FJ (1968) 5-(3-Dimethylamino-2-methylpropyl)dibenzocycloheptenes. US3409640A

  112. Villani FJ, Ellis CA, Teichman C, Bigos C (1962) J Med Pharm Chem 5:373–383

    CAS  Google Scholar 

  113. Boyland E, Green B (1962) Br J Cancer 16:347–360

    CAS  Google Scholar 

  114. Eisenbrand J, Baumann K (1969) Z Lebensm-Unters Forsch 140:210–216

    CAS  Google Scholar 

  115. Etzweiler F, Senn E, Schmidt H (1995) Anal Chem 67:655–658

    CAS  Google Scholar 

  116. May WE, Wasik SP, Freeman DH (1978) Anal Chem 50:175–179

    CAS  Google Scholar 

  117. Weil-Malherbe H (1946) Biochem J 40:351–363

    CAS  Google Scholar 

  118. Bradley RS, Cleasby TG (1953) J Chem Soc 53:1690–1692

    Google Scholar 

  119. Chen X, Oja V, Chan WG, Hajaligol MR (2006) J Chem Eng Data 51:386–391

    CAS  Google Scholar 

  120. Goldfarb JL, Suuberg EM (2008) J Chem Eng Data 53:670–676

    CAS  Google Scholar 

  121. Grayson RT, Fosbraey LA (1982) Pestic Sci 13:269–278

    CAS  Google Scholar 

  122. Kloc C, Laudise RA (1998) J Cryst Growth 193:563–571

    CAS  Google Scholar 

  123. Li XW, Shibata E, Kasai E, Nakamura T (2002) Mater Trans 43:2903–2907

    CAS  Google Scholar 

  124. Macknick AB, Prausnitz JM (1979) J Chem Eng Data 24:175–178

    CAS  Google Scholar 

  125. Malaspina L, Gigli R, Bardi G (1973) J Chem Phys 59:387–394

    CAS  Google Scholar 

  126. Oja V, Suuberg EM (1998) J Chem Eng Data 43:486–492

    CAS  Google Scholar 

  127. Sears GW, Hopke ER (1949) J Am Chem Soc 71:1632–1634

    CAS  Google Scholar 

  128. Taylor JW, Crookes RJ (1976) J Chem Soc 72:723–730

    CAS  Google Scholar 

  129. Alaee M, Whittal RM, Strachan WMJ (1996) Chemosphere 32:1153–1164

    CAS  Google Scholar 

  130. Bamford HA, Poster DL, Baker JE (1999) Environ Sci Technol 18:1905–1912

    CAS  Google Scholar 

  131. Muir DCG, Lint D, Grift NP (1985) Environ Toxicol Chem 4:663–675

    CAS  Google Scholar 

  132. Shiu W, Mackay D (1997) J Chem Eng Data 42:27–30

    CAS  Google Scholar 

  133. Wauchope RD, Haque R (1972) Can J Chem 50:133–138

    CAS  Google Scholar 

  134. Shiu WY, Doucette W, Gobas F, Andren A, Mackay D (1988) Environ Sci Technol 22:651–658

    CAS  Google Scholar 

  135. Oleszek-Kudlak S, Shibata E, Nakamura T (2007) J Chem Eng Data 52:1824–1829

    CAS  Google Scholar 

  136. Fichan I, Larroche C, Gros JB (1999) J Chem Eng Data 44:56–62

    CAS  Google Scholar 

  137. Weidenhamer JD, Macias FA, Fischer NH, Williamson GB (1993) J Chem Ecol 19:1799–1807

    CAS  Google Scholar 

  138. Baslas BK, Baslas RK (1972) Riechst Aromen Koerperpflegem 22:200, 202

    Google Scholar 

  139. Baslas BK, Baslas RK (1972) Riechst Aromen Koerperpflegem 22:155–156, 158

    Google Scholar 

  140. Charma ML, Nigam MC, Handa KL (1963) Riechst Aromen 13:325–326

    Google Scholar 

  141. Huang W-H, Wei H-Y (1966) Riv Ital Essenze Profumi Piante Off Aromi Saponi Cosmet 48:70–72

    CAS  Google Scholar 

  142. Kergomard A, Philibert-Bigou J, Geneix MT (1959) Scientifique Cndlr Perillic alcohol and carveol derivatives. FR1183849

  143. Ravindranath B, Srinivas P (1984) Indian J Chem, Sect B 23B:666–667

    CAS  Google Scholar 

  144. Suga K, Watanabe S (1957) Kogakubu Kenkyu Hokoku (Chiba Daigaku) 8:37–46

    CAS  Google Scholar 

  145. Treibs W, Schmidt H (1927) Ber Dtsch Chem Ges B 60B:2335–2341

    CAS  Google Scholar 

  146. Schwarz FP (1980) Anal Chem 52:10–15

    CAS  Google Scholar 

  147. Natarajan GS, Venkatachalam KA (1972) J Chem Eng Data 17:328–329

    CAS  Google Scholar 

  148. McAuliffe C (1966) J Phys Chem 70:1267–1275

    CAS  Google Scholar 

  149. Linder EG (1935) J Phys Chem 35:531–535

    Google Scholar 

  150. Lister MW (1941) J Am Chem Soc 63:143–149

    CAS  Google Scholar 

  151. Meyer EF, Hotz RD (1973) J Chem Eng Data 18:359–362

    CAS  Google Scholar 

  152. Bakierowska A, Trzeszczynski J (2003) Fluid Phase Equilib 213:139–146

    CAS  Google Scholar 

  153. Dauben WG, Shaffer GW, Deviny EJ (1970) J Am Chem Soc 92:6273–6281

    CAS  Google Scholar 

  154. Fleming I, Paterson I (1979) Synthesis: 736–738

  155. Kayahara H, Ueda H, Ichimoto I, Tatsumi C (1970) Agric Biol Chem 34:1597–1602

    CAS  Google Scholar 

  156. Kurata T (1978) Yukagaku 27:226–229

    CAS  Google Scholar 

  157. Leffingwell JC (1970) (Reynolds, RJ, Tobacco Co.) Dihydrocarvone. DE1814025

  158. Leffingwell JC (Reynolds, RJ, Tobacco Co.) (Reynolds, R. J., Tobacco Co.) Dihydrocarvone. DE1814025, 1970/02/26/

  159. Malhotra SK, Moakley DF, Johnson F (1967) J Am Chem Soc 89:2794–2795

    CAS  Google Scholar 

  160. Rupe H, Loffl K (1914) Ber Dtsch Chem Ges 47:2150–2152

    CAS  Google Scholar 

  161. Saraswathi GN, Muraleedharan NV, Verghese J (1974) Indian J Chem 12:561–563

    CAS  Google Scholar 

  162. Semmler FW, Feldstein J (1914) Ber Dtsch Chem Ges 47:384–389

    CAS  Google Scholar 

  163. Smith HA, Huff BJL, Powers WJ III, Caine D (1967) J Org Chem 32:2851–2856

    CAS  Google Scholar 

  164. Vig OP (1961) Zh Obshch Khim 31:669–672

    CAS  Google Scholar 

  165. Vig OP, Chugh OP, Matta KL (1968) J Indian Chem Soc 45:748–749

    CAS  Google Scholar 

  166. Vig OP, Khurana AL, Matta KL (1968) J Indian Chem Soc 45:615–627

    CAS  Google Scholar 

  167. Vig OP, Sharma ML, Anand RC, Sharma SD (1976) J Indian Chem Soc 53:50–53

    CAS  Google Scholar 

  168. Adamus M, Schnayder J, Terczynska A, Farmaceutyczne KZ (1961) Dimethylaminoethyl benzhydryl ether hydrochloride. PL44509 19610607

  169. Babiyan NA, Gamburyan AA, Shaapuni DK, Mndzhoyan OL (1973) Arm Khim Zh 26:164–167

    CAS  Google Scholar 

  170. Cusic JW (1952) GSa (Dialkylamino)alkyl ethers of certain polynuclear compounds. DE857502 19521201

  171. Dankova TF, Preobrazhenskii NA, Miropol’skaya MA (1951) Zh Obshch Khim 21:570–574

    CAS  Google Scholar 

  172. Fujie Y (1961) Yakugaku Zasshi 81:693–698

    CAS  Google Scholar 

  173. Klosa J (1955) Arch Pharm Ber Dtsch Pharm Ges 288:246–252

    CAS  Google Scholar 

  174. Rieveschl G Jr, Parke DC (1947) Dialkylaminoalkyl benzhydryl ethers. US2421714

  175. Schlittler E, Uffer A (1957) Ciba Pharmaceutical Products, I Amines. US2781348

  176. Sugasawa S, Fujiwara K (1951) Yakugaku Zasshi 71:365–366

    CAS  Google Scholar 

  177. Veldstra H, Akkerman AM, Chininefabriek NVA (1954) 2-Dimethylaminoethyl diphenylmethyl ether. US2668857

  178. Wunderlich H (1966) Basic benzhydryl ethers. DD42953

  179. Kurz J, Ballschmiter K (1999) Chemosphere 38:573–586

    CAS  Google Scholar 

  180. Vesala A (1974) Acta Chem Scand Ser A A28:839–845

    CAS  Google Scholar 

  181. Ajisaka N, Hara K, Mikuni K, Hara K, Hashimoto H (2000) Biosci Biotechnol Biochem 64:731–734

    CAS  Google Scholar 

  182. Bertram J, Gildemeister E (1894) J Pr Chem 49:185–196

    Google Scholar 

  183. Bertram J, Gildemeister E (1897) J Pr Chem 56:506–514

    Google Scholar 

  184. Burrell JWK, Garwood RF, Jackman LM, Oskay E, Weedon BCL (1966) J Chem Soc C: 2144–2154

  185. Calzada JG, Hooz J (1974) Org Synth 54:63–67

    CAS  Google Scholar 

  186. Coates RM, Melvin LS Jr (1970) J Org Chem 35:865–867

    CAS  Google Scholar 

  187. Greenlee KW, Wiley VG (1962) J Org Chem 27:2304–2307

    CAS  Google Scholar 

  188. Kishimoto T, Masubara Y (1975) Nippon Kagaku Kaishi: 701–704

  189. Lee Y-W, Lin C-H (2013) Asian J Chem 25:4251–4255

    CAS  Google Scholar 

  190. Nagai K (1975) Bull Chem Soc Jpn 48:2317–2322

    CAS  Google Scholar 

  191. Nasipuri D, Chaudhuri SRR (1975) J Chem Soc Perkin Trans 1:262–265

    Google Scholar 

  192. Nasipuri D, Samaddar AK, Das G (1980) Indian J Chem, Sect B 19B:727–734

    CAS  Google Scholar 

  193. Olah GA, Husain A, Singh BP (1983) Synthesis: 892–895

  194. Ramaiah M, Nigam SS (1969) Riechst Aromen Koerperpflegem 19:433–434, 436, 438, 440, 443–444

    Google Scholar 

  195. Ramaiah M, Nigam SS (1972) Riechst Aromen Koerperpflegem 22:71–72, 74, 76, 78

    Google Scholar 

  196. Rummens FHA (1965) Recl Trav Chim Pays-Bas 84:1003–1013

    CAS  Google Scholar 

  197. Tufeu R, Subra P, Plateaux C (1993) J Chem Thermodyn 25:1219–1228

    CAS  Google Scholar 

  198. Van der Klei A, De Jong RLP, Lugtenburg J, Tielens AGM (2002) Eur J Org Chem: 3015–3023

  199. Massaldi HA, King CJ (1973) J Chem Eng Data 18:793–797

    Google Scholar 

  200. Krasnykh EL, Verevkin SP, Koutek B, Doubsky J (2006) J Chem Thermodynam 38:717–723

    CAS  Google Scholar 

  201. Hauff K, Fischer RG, Ballschmiter K (1998) Chemosphere 37:2599–2615

    CAS  Google Scholar 

  202. Gok A, Cebeci F, Ushi H, Kirbaslar SI (2011) J Chem Eng Data 56:521–526

    CAS  Google Scholar 

  203. Cal K (2008) Yakugaku Zasshi 126:307–309

    Google Scholar 

  204. Serpinski VV, Voitkevich SA, Liuvosits NI (1958) Trudi Vsesoyuzni Nauchno-Issledovatelskii Institut Sinteticheskikh i Naturalnikh Dushistykh Veshches 4:125–130

    Google Scholar 

  205. Barone G, Della Gatta G, Ferro D, Piacente V (1990) J Chem Soc, Faraday Trans 86:75–79

    CAS  Google Scholar 

  206. Avdeef A (2007) Adv Drug Deliv Rev 59:568–590

    CAS  Google Scholar 

  207. Surov AO, Perlovich GL (2010) J Struct Chem 31:308–315

    Google Scholar 

  208. Rhode H (1922) Biochemisches Zeitschrift 130:481–496

    CAS  Google Scholar 

  209. Amano A, Akiyama T, Miura T, Hagiwara T (2002) Process for preparing 3-l-menthoxypropane-1,2-diol. EP1201635A1

  210. Beckett GH, Wright CRA (1876) J Chem Soc Trans 29:1–8

    Google Scholar 

  211. Beckmann E (1897) J Pr Chem 55:14–31

    CAS  Google Scholar 

  212. Cramer JSN (1943) Recl Trav Chim Pays-Bas Belg 62:606–610

    CAS  Google Scholar 

  213. Huggett WE (1941) J Soc Chem Ind Lond 60:67–68

    CAS  Google Scholar 

  214. Kobe KA, Okabe TS, Ramstad MT, Huemmer PM (1941) J Am Chem Soc 63:3251–3252

    CAS  Google Scholar 

  215. Kozlov NG, Pehk T, Valimae T (1981) Khim Prir Soedin: 312–317

  216. Lecat M (1926) Ann Soc Sci Bruxelles 45(169–176):284–294

    Google Scholar 

  217. Lochynski S, Kuldo J, Frackowiak B, Holband J, Wojcik G (2000) Tetrahedron Asymmetry 11:1295–1302

    CAS  Google Scholar 

  218. Power FB, Kleber C (1894) Zeit Anal Chem 33:762–763

    CAS  Google Scholar 

  219. Read J, Grubb W (1934) Optically active menthol. DE600983

  220. Read J, Grubb WJ (1932) J Soc Chem Ind Lond 51:329

    CAS  Google Scholar 

  221. Scheuer (1910) Zeitschrift fur physikalische Chemie 72:556

    Google Scholar 

  222. Zeitschel O, Schmidt H (1926) Ber Dtsch Chem Ges B 59B:2298–2307

    CAS  Google Scholar 

  223. Bell RP, Caldin EF (1938) J Chem Soc: 382–389

  224. Chen F, Liu A, Yan Q, Liu M, Zhang D, Shao L (1999) Synth Commun 29:1049–1056

    CAS  Google Scholar 

  225. Derdzinski K, Zabza A (1977) Bull Acad Pol Sci Ser Sci Chim 25:529–540

    CAS  Google Scholar 

  226. Doleschall G, Toth G (1980) Tetrahedron 36:1649–1665

    CAS  Google Scholar 

  227. Duraisamy M, Walborsky HM (1983) J Am Chem Soc 105:3252–3264

    CAS  Google Scholar 

  228. Jain SL, Sharma VB, Sain B (2006) Tetrahedron 62:6841–6847

    CAS  Google Scholar 

  229. Jansen U, Runsink J, Mattay J (1991) Liebigs Ann Chem: 283–285

  230. Maslinska-Solich J, Rudnicka I, Jedlinski ZJ (1981) J Chem Soc Perkin Trans 1:3034–3040

    Google Scholar 

  231. Mohajerani B, Heravi MM, Ajami D (2001) Monatsh Chem 132:871–873

    CAS  Google Scholar 

  232. Rajkumar GA, Sivamurugan V, Arabindoo B, Murugesan V (2004) Indian J Chem, Sect B: Org Chem Incl Med Chem 43B:936–946

    CAS  Google Scholar 

  233. Shaabani A, Ameri M (1998) J Chem Res Synop: 100–101

  234. Shono T, Matsumura Y, Hibino K, Miyawaki S (1974) Tetrahedron Lett: 1295–1298

  235. Voisin D, Gastambide B (1971) Bull Soc Chim Fr: 2643–2651

  236. Wallach O (1918) Justus Liebigs Ann Chem 414:271–296

    CAS  Google Scholar 

  237. Wallach O (1924) Justus Liebigs Ann Chem 437:190–194

    CAS  Google Scholar 

  238. Miller DJ, Hawthorne SB (2000) J Chem Eng Data 45:315–318

    CAS  Google Scholar 

  239. Barnard D, Bateman L, Harding AJ, Koch HP, Sheppard N, Sutherland GBBM (1950) J Chem Soc: 915–925

  240. Blumann A, Zeitschel O (1911) Ber Dtsch Chem Ges 44:2590–2593

    CAS  Google Scholar 

  241. Higgins GMC, Saville B, Evans MB (1965) J Chem Soc: 702–712

  242. Nazarov IN, Kamernitskii AV, Akhrem AA (1958) Zh Obshch Khim 28:1458–1469

    CAS  Google Scholar 

  243. Petrowitz HJ (1963) Riechst Aromen 13:273–277

    CAS  Google Scholar 

  244. Sato K, Morii S (1976) Asahi Garasu Kogyo Gijutsu Shoreikai Kenkyu Hokoku 29:199–210

    CAS  Google Scholar 

  245. Schmidt H, Bernhardt D, Muehlstaedt M (1963) Arch Pharm Ber Dtsch Pharm Ges 296:544–548

    CAS  Google Scholar 

  246. Suga T, Keiich K, Matsuura T (1965) Bull Chem Soc Jpn 38:893–896

    CAS  Google Scholar 

  247. von SH, Treff W (1906) Ber Dtsch Chem Ges 39:906–914

  248. Bakowska-Janiszewska J, Scianowski J, Uzarewicz A (2001) Pol J Chem 75:649–656

    CAS  Google Scholar 

  249. Francisco CG, Freire R, Hernandez R, Melian D, Salazar JA, Suarez E (1984) J Chem Soc Perkin Trans 1:459–465

    Google Scholar 

  250. Furukawa S, Tomizawa Z (1920) J Chem Ind Tokyo 23:342–363

    CAS  Google Scholar 

  251. Ito M, Abe K, Abe H, Yamada K, Masamune T (1974) Bull Chem Soc Jpn 47:3173–3174

    CAS  Google Scholar 

  252. Satoh A, Utamura H, Nakade T, Nishimura H (1995) Biosci Biotechnol Biochem 59:1139–1141

    CAS  Google Scholar 

  253. Suga T, Imamura K, Shishibori T (1972) Bull Chem Soc Jap 45:545–548

    CAS  Google Scholar 

  254. Cabani S, Conti G, Lepori L (1971) Trans Faraday Soc 67:1933–1942

    CAS  Google Scholar 

  255. Smyrl TG, LeMaguer M (1980) J Chem Eng Data 25:150–152

    CAS  Google Scholar 

  256. Arai H, Murata N (1960) Kogyo Kagaku Zasshi 63:107–110

    CAS  Google Scholar 

  257. Bardhan JC, De NC, Datta BB (1951) J Chem Soc: 3195–3199

  258. Bazyl’chik VV, Overchuk TN (1992) Khim Prir Soedin: 335–338

  259. Inagaki T, Ueda H (1987) Agric Biol Chem 51:2635–2639

    CAS  Google Scholar 

  260. Izsak D, Le FRJW (1966) J Chem Soc B:251–254

    Google Scholar 

  261. Lassak EV, Pinhey JT, Ralph BJ, Sheldon T, Simes JJH (1973) Aust J Chem 26:845–854

    CAS  Google Scholar 

  262. Lawesson SO, Larsen EH, Jakobsen HJ, Frisell C (1964) Recl Trav Chim Pays-Bas 83:464–468

    CAS  Google Scholar 

  263. McAndrew BA (1979) J Chem Soc Perkin Trans 1:1837–1846

    Google Scholar 

  264. Morizur JP, Furth B, Kossanyi J (1967) Bull Soc Chim Fr: 1422–1427

  265. Ohloff G, Schade G (1960) α,Î2-Unsaturated alicylic ketones. DE1088949

  266. Roberts OD (1915) J Chem Soc Trans 107:1465–1470

    CAS  Google Scholar 

  267. Smith DM, Levi L (1961) J Agric Food Chem 9:230–244

    CAS  Google Scholar 

  268. Ueda H (1960) Bull Agric Chem Soc Jpn 24:601–603

    CAS  Google Scholar 

  269. Wiemann J, Dubois Y (1962) Bull Soc Chim Fr: 1813–1816

  270. Wolfenden R, Liang YL (1988) J Biol Chem 263:8022–8026

    CAS  Google Scholar 

  271. Weast RCE (1960) Handbook of chemistry and physics, 42nd edn. Chemical Rubber Co., Cleveland

    Google Scholar 

  272. Daniels F, Williams JW, Bender P, Alberty RA, Cornwell CD (1962) Experimental physical chemistry. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter Guthrie.

Appendix

Appendix

No claim is made for originality of the derivations given here; they are included to help the reader understand where the final equations used in the calculations actually came from.

Derivation of ideal solubility for mannitol

Robinson and Stokes [15] have reported the osmotic, ϕ. and activity, γ, coefficients for mannitol (species C in what follows) as functions of concentration (molal)

$$\upphi^{{^\circ }} = 1 + .0034{\text{m}}_{\text{c}} + 0.0042{\text{m}}_{\text{c}}^{2}$$
$${\text{Log}}_{10}\upgamma_{\text{C}} = 0.00295{\text{m}}_{\text{c}} + 0.00274{\text{m}}_{\text{c}}^{2}$$

The solubility of mannitol is 1.186 m [14].ΔG for mannitol going from saturated solution to 0.01 m (assumed ideal; γc = 1.000) can be calculated from:

$${\text{M}} = 1.186, \upgamma_{\text{c}} = 10^{(0.00295 \times 1.186 + 0.00274 \times 1.1862)} = 1.017$$
$${\text{M}} = 0.01, \upgamma_{\text{c}} = 10^{(0.00295 \times 0.01 + 0.00274 \times 0.012)} = 1.000$$
$$\Delta {\text{G}} = {\text{RT}}\ln \left( {\left( {0.01 \times 1.000} \right)/\left( {1.184 \times 1.017} \right)} \right) = - 2.84$$

ΔG for mannitol going from 0.01 m solution to 1.00 m solution, assuming ideality

$$\Delta {\text{G}} = {\text{RT}}\ln \left( {1.000/0.01} \right) = + 2.73$$

No literature values of the densities for mannitol solutions were found. A sucrose solution with the same g/100 g concentration had density = 1.08 [271] while a glycerol solution with the same g/100 g concentration had density = 1.05 [271].

Definitions for molal and molar concentrations were taken from Alberty et al. [272]

$${\text{m}} = 1000{\text{n}}_{2} /{\text{n}}_{1} {\text{M}}_{1} = 1000{\text{n}}_{2} /1000\;{\text{for}}\;{\text{water}}$$
$${\text{M}} = 1000\uprho{\text{n}}_{2} /\left( {{\text{n}}_{1} {\text{M}}_{1} + {\text{n}}_{2} {\text{M}}_{2} } \right) = 1000\uprho{\text{n}}_{2} /\left( {1000 + 215.7} \right) =\uprho{\text{m}}/\left( {1 + 215.7/1000} \right)$$
$${\text{If}}\,\uprho = 1.08, \,{\text{M}} = 1.08*1.186/\left( {1 + .2157} \right) = 1.05$$
$${\text{If}}\,\uprho = 1.05,\;{\text{M}} = 1.05*1.186/\left( {1 + .2157} \right) = 1.02$$

For conversion of a 0.01 M to saturated solution (M scale), if ρ = 1.05, ΔG = .593*ln(1.05/.01) = +2.76 kcal. If instead ρ = 1.02, ΔG = .593*ln(1.02/.01) = +2.74.

The average = 2.75. Thus ΔG for solid to 1 M aqueous is −2.84 + 2.75 = −0.09 kcal/mol. A simple conclusion is that in the case of mannitol, using m or M makes very little difference to the value of ΔG for solid to 1 M aqueous.

A full error analysis was carried out for the calculation of the ideal saturated molarity for Mannitol.

$${\text{M}} =\uprho*\upphi*{\text{n}}_{2} /\left( {1 + {\text{n}}_{2} {\text{M}}_{2} /1000} \right)$$
$$\begin{aligned}\upsigma_{\text{M}} & = {\text{sqrt}}((\upsigma_{\uprho} *\upphi*{\text{n}}_{2} /\left( {1 + {\text{n}}_{2} {\text{M}}_{2} /1000} \right))^{2} + \, (\upsigma_{\upphi} *\uprho*{\text{n}}_{2} /\left( {1 + {\text{n}}_{2} {\text{M}}_{2} /1000} \right))^{2} \\ & \quad + (\upsigma_{{{\text{n}}2}} *\uprho*\upphi/\left( {{\text{M}}_{2} {\text{n}}_{2} /1000 + 1} \right)^{2} )^{2} ) \\ \end{aligned}$$

With ρ = 1.015, σρ* = 0.02, ϕ = 1.017, σϕ = 0.02, n2 = 1.184, and σn2 = 0.01 this formula leads to σM = 0.029

Derivation of effect of finite ΔCp on extrapolated vapor pressure

Constant ΔHv

The data are centered on T = Tx. By fitting to the Clausius–Clapeyron equation we get \(\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }}\).On this assumption, the VP at T = θ is given by

$$\ln ({\text{p}}^{\uptheta} ) = \ln \left( {{\text{p}}^{{{\text{T}}_{\text{x}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right)$$

Constant ΔCp, variable ΔHv

If we know or have estimated ΔCp, at T = θ, ΔC θp , then we can calculate \(\Delta {\text{H}}_{\text{v}}^{\uptheta}\) from \(\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }}\):

$$\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }} = \Delta {\text{H}}_{\text{v}}^{\uptheta} + \Delta {\text{C}}_{\text{p}}^{\uptheta} \left( {{\text{T}}_{\text{x}} -\uptheta} \right)$$

On this assumption, the VP at T = θ is given by

$$\ln \left( {{\text{p}}^{\uptheta} } \right) = \ln \left( {{\text{p}}^{{{\text{T}}_{\text{x}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta}\uptheta}}{\text{R}}\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right)$$

which can be simplified to

$$\ln ({\text{p}}^{\uptheta} ) = \ln \left( {{\text{p}}^{{{\text{T}}_{\text{x}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\left( {1 - \frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)$$

The free energy of vaporization (pure compound to vapor at 1 M, p = p1M atm) is given by

$$\Delta {\text{G}}_{\text{v}} = - {\text{RT}}\ln ({\text{p}}_{{1{\text{M}}}} / {\text{VP}})$$
$${\text{p}}_{{1{\text{M}}}} = \left( {\frac{\text{n}}{\text{V}}} \right){\text{R}}^{{\prime }} {\text{T}} = {\text{R}}^{{\prime }} {\text{T}}$$

where R is the gas constant in kcal mol−1 K−1 and R′ is the gas constant in L atm mol−1 K−1.

Thus

$$\Delta {\text{G}}_{\text{v}} = - {\text{RT}}\ln ({\text{R}}^{{\prime }} {\text{T}}) + {\text{RT}}\ln \left( {{\text{p}}^{\uptheta} } \right)$$

The effect on the free energy of solvation of changing from the constant ΔHv assumption to the constant ΔCp assumption is then

$$\Delta \Delta {\text{G}}_{\text{v}} = {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{C}}^{\uptheta} } \right) - {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{H}}^{\uptheta} } \right)$$

where p θC is the VP at temperature θ calculated assuming constant ΔCp and temperature dependent ΔHv and p θH is the VP at temperature θ calculated assuming constant ΔHv.

$$\Delta \Delta {\text{G}}_{\text{v}} = {\text{R}}\uptheta\left( {\ln \left( {{\text{p}}^{{{\text{T}}_{\text{x}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\left( {1 - \frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)} \right) - {\text{R}}\uptheta\left( {\ln \left( {{\text{p}}^{{{\text{T}}_{\text{x}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right)} \right)$$

which simplifies to:

$$\Delta \Delta {\text{G}}_{\text{v}} = {\text{R}}\uptheta\left( {\left( {\frac{{\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }} }}{\text{R}}} \right)\left( {\frac{1}{\theta } - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\left( {1 - \frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)} \right)$$

Substituting for \(\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{x}} }}\):

$$\Delta \Delta {\text{G}}_{\text{v}} = {\text{R}}\uptheta\left( {\left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}} + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\left( {{\text{T}}_{\text{x}} -\uptheta} \right)} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{\uptheta} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\uptheta} }}{\text{R}}\left( {1 - \frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)} \right)$$

which simplifies to:

$$\Delta \Delta {\text{G}}_{\text{v}} = \Delta {\text{C}}_{\text{p}}^{\uptheta} \left( {{\text{T}}_{\text{x}} -\uptheta} \right) + \Delta {\text{C}}_{\text{p}}^{\uptheta}\uptheta\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)$$

The solvation free energy is given by

$$\Delta \Delta {\text{G}}_{\text{s}} = - {\text{R}}\uptheta\ln \left( {\frac{\text{c}}{\text{p}}} \right) - {\text{R}}\uptheta\ln ({\text{R}}^{{\prime }}\uptheta)$$

where c is the concentration of the compound in water. The effect of changing from a VP \({\text{p}}_{\text{H}}^{\uptheta}\) based on an assumed constant ΔHv to a VP \({\text{p}}_{\text{C}}^{\uptheta}\) based on an assumed constant ΔCp is given by

$$\Delta \Delta {\text{G}}_{\text{s}} = - {\text{R}}\uptheta\ln \left( {\frac{\text{c}}{{{\text{p}}_{\text{C}}^{\uptheta} }}} \right) + {\text{R}}\uptheta\ln \left( {\frac{\text{c}}{{{\text{p}}_{\text{H}}^{\uptheta} }}} \right)$$
$$\Delta \Delta {\text{G}}_{\text{s}} = {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{C}}^{\uptheta} } \right) - {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{H}}^{\uptheta} } \right) = \Delta \Delta {\text{G}}_{\text{v}} = \Delta\Delta {\text{C}}_{\text{p}}^{\uptheta} \left( {\left( {{\text{T}}_{\text{x}} -\uptheta} \right) +\uptheta\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)} \right)$$

The function \(\left( {{\text{T}}_{\text{x}} -\uptheta} \right) +\uptheta\ln \left( {\frac{\uptheta}{{{\text{T}}_{\text{x}} }}} \right)\) is invariably positive, and \(\Delta {\text{C}}_{\text{p}}^{\uptheta}\) is always negative so \(\Delta \Delta {\text{G}}_{\text{s}}\) is always negative. It seems that \(\Delta {\text{C}}_{\text{p}}^{\uptheta}\) must always be negative for normal liquids because \(\Delta {\text{H}}_{\text{v}}^{\uptheta}\) has a finite value at room temperature but is zero at the critical point.

Derivation of the correction from VPsub-cooled liquid to VPsolid

At the outset, for most of the compounds which are solid at room temperature but for which the VP refers to the liquid or sub-cooled liquid, all that is known are: the VP at θ; the melting point, Tfus; that the ln(p) versus 1/T lines meet at 1/Tfus and the entropy of fusion (measured or estimated). In the first treatment we are implicitly assuming that ΔCp can be ignored for both liquid and solid; this is a reasonable assumption for sublimation, where it is common to use a general value of ΔCp = −12 cal/K/mol, but less so for evaporation of a liquid where for the sizes of molecules considered here ΔCp is in the range −30 to −40. Next we will examine the effects of going to the next approximation, namely that ΔH varies with temperature but ΔCp is constant

  1. (a)

    First assumption (ΔH terms are temperature independent)

Let ln(p) = a + b/T for the liquid at any temperature and ln(p) = a′ + b′/T for the solid at temperatures at or below the m.p., Tfus.

$${\text{b}} = - \Delta {\text{H}}_{\text{v}} /{\text{R}}$$
$${\text{b}}^{{\prime }} = - \left( {\Delta {\text{H}}_{\text{v}} + \Delta {\text{H}}_{\text{fus}} } \right)/{\text{R}}$$
$${\text{At}}\;{\text{T}} = {\text{T}}_{\text{fus}}$$
$${\text{a}} + {\text{b}}/{\text{T}}_{\text{fus}} = {\text{a}}^{{\prime }} + {\text{b}}^{{\prime }} /{\text{T}}_{\text{fus}} ,{\text{b}}^{{\prime }}$$
$${\text{At}}\;{\text{T}} =\uptheta$$

a + b/θ = a′ + b′/θ + cH where cH is the amount which must be added to ln(vp sublimation) to get ln(vp subcooled liquid). The subscript cH denotes the assumption of temperature independent ΔH values.

Take the difference between the equations for T = Tfus and, substitute for b’ and simplify

$$\left( {{\text{b}}/{\text{T}}{-}{\text{b}}/\uptheta} \right) = \left( {{\text{b}}^{{\prime }} /{\text{T}}_{\text{fus}} {-}{\text{b}}^{{\prime }} /\uptheta} \right){-}{\text{c}}_{\text{H}}$$
$${\text{c}}_{\text{H}} = \left( {\Delta {\text{S}}_{\text{fus}} /\left( {{\text{R}}\;\uptheta} \right)} \right)\left( {{\text{T}}_{\text{fus}} {-}\uptheta} \right)$$
  1. (b)

    Second assumption (The ΔCp terms are temperature independent):

Assume that we know \(\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }}\) (It will cancel out in the end.), \(\Delta {\text{C}}_{\text{p}}^{\text{vap}}\), \(\Delta {\text{C}}_{\text{p}}^{\text{sub}}\) and ln(psub-cooled). We will derive an expression for cC the correction to be added to ln(psublimation) to obtain ln(psub-cooled). The subscript cC denotes the assumption of temperature independent ΔCp values.

The VP at Tfus can be written:

$$\ln \left( {{\text{p}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} } \right) - \ln \left( {{\text{p}}_{\text{v}}^{\uptheta} } \right) = \int\limits_{\uptheta}^{{{\text{T}}_{\text{fus}} }} {\frac{{\Delta\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{C}}_{\text{p}}^{\text{vap}} \left( {{\text{T}} - {\text{T}}_{\text{fus}} } \right)}}{{{\text{RT}}^{2} }}} {\text{dT}} = \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{fus}} }}} \right) + \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{vap}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right)$$

Or the VP at θ in terms of temperatures, \(\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }}\), and \(\Delta {\text{C}}_{\text{p}}^{\text{vap}}\) can be written as:

$$\ln \left( {{\text{p}}_{\text{v}}^{\uptheta} } \right) = \ln \left( {{\text{p}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} } \right) - \left( {\frac{{\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} }}{\text{R}}} \right)\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{fus}} }}} \right) - \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{vap}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right)$$

Now we will do the same for the sublimation pressure. First we note that at any temperature T (less than or equal to Tfus):

$$\Delta {\text{H}}_{\text{sub}}^{\text{T}} = \Delta {\text{H}}_{\text{v}}^{\text{T}} + \Delta {\text{H}}_{\text{fus}}^{\text{T}}$$
$$\Delta {\text{C}}_{\text{p}}^{\text{sub}} = \Delta {\text{C}}_{\text{p}}^{\text{vap}} + \Delta {\text{C}}_{\text{p}}^{\text{fus}}$$

and

$$\Delta {\text{C}}_{\text{p}}^{\text{fus}} = \Delta {\text{C}}_{\text{p}}^{\text{sub}} - \Delta {\text{C}}_{\text{p}}^{\text{vap}}$$

Now writing \(\Delta {\text{H}}_{\text{sub}}^{\text{T}}\) in terms of temperature independent quantities and T itself we obtain:

$$\Delta {\text{H}}_{\text{sub}}^{\text{T}} = \Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{C}}_{\text{p}}^{\text{vap}} \left( {{\text{T}} - {\text{T}}_{\text{fus}} } \right) + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} + \left( {\Delta {\text{C}}_{\text{p}}^{\text{sub}} - \Delta {\text{C}}_{\text{p}}^{\text{vap}} } \right)\left( {{\text{T}} - {\text{T}}_{\text{fus}} } \right) = \Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{C}}_{\text{p}}^{\text{sub}} \left( {{\text{T}} - {\text{T}}_{\text{fus}} } \right)$$
$$\begin{aligned} \ln \left( {{\text{p}}_{\text{sub}}^{{{\text{T}}_{\text{fus}} }} } \right) - \ln \left( {{\text{p}}_{\text{sub}}^{\uptheta} } \right) & = \int\limits_{\uptheta}^{{{\text{T}}_{\text{fus}} }} {\frac{{\left( {\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{C}}_{\text{p}}^{\text{sub}} \left( {{\text{T}} - {\text{T}}_{\text{fus}} } \right)} \right)}}{{{\text{RT}}^{2} }}} {\text{dT}} \\ & = \frac{{\left( {\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} } \right)}}{\text{R}}\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{fus}} }}} \right) + \frac{{\Delta {\text{C}}_{\text{p}}^{\text{sub}} }}{\text{R}}\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right) \\ \end{aligned}$$
$$\ln \left( {{\text{p}}_{\text{sub}}^{\uptheta} } \right) = \ln \left( {{\text{p}}_{\text{sub}}^{{{\text{T}}_{\text{fus}} }} } \right) - \frac{{\left( {\Delta {\text{H}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} } \right)}}{\text{R}}\left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{fus}} }}} \right) - \frac{{\Delta {\text{C}}_{\text{p}}^{\text{sub}} }}{\text{R}}\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right)$$

Now we can write the revised definition of the correction cC, the quantity to be added to \(\ln \left( {{\text{p}}_{\text{sub}}^{\uptheta} } \right)\) to obtain \(\ln \left( {{\text{p}}_{\text{v}}^{\uptheta} } \right)\), recalling that at Tfus, \(\ln \left( {{\text{p}}_{\text{sub}}^{{{\text{T}}_{\text{fus}} }} } \right) = \ln \left( {{\text{p}}_{\text{v}}^{{{\text{T}}_{\text{fus}} }} } \right)\)

$${\text{c}}_{\text{C}} = \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{sub}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right) - \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{vap}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right) + \Delta {\text{H}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} \left( {\frac{1}{\uptheta} - \frac{1}{{{\text{T}}_{\text{fus}} }}} \right)$$

Or in terms of \(\Delta {\text{S}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }}\)

$${\text{c}}_{\text{C}} = \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{sub}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right) - \left( {\frac{{\Delta {\text{C}}_{\text{p}}^{\text{vap}} }}{\text{R}}} \right)\left( {1 - \frac{{{\text{T}}_{\text{fus}} }}{\uptheta} + \ln \left( {\frac{{{\text{T}}_{\text{fus}} }}{\uptheta}} \right)} \right) + \left( {\frac{{\Delta {\text{S}}_{\text{fus}}^{{{\text{T}}_{\text{fus}} }} }}{{{\text{R}}\uptheta}}} \right)\left( {{\text{T}}_{\text{fus}} -\uptheta} \right)$$

If the heat capacity terms are set to zero, then this becomes the equation deduced above for the first hypothesis.

In the challenge dataset the worst case was 2,6-syringealdehyde, which is the highest melting compound of those where VP for the sub-cooled liquid must be reduced to VP for the solid. For this compound inclusion of the estimated ΔCp values lowers ln(vp) by 2.99. What is of interest is the effect on ΔGs. From the derivation of the effect of including heat capacity terms on the extrapolated VP, the effect on ΔGs can be written as:

$$\Delta \Delta {\text{G}}_{\text{s}} = {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{C}}^{\uptheta} } \right) - {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{H}}^{\uptheta} } \right)$$

where p θC is the VP at temperature θ calculated assuming constant ΔCp values and temperature dependent ΔHv values and p θH is the VP at temperature θ calculated assuming constant ΔHv values.

$${\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{C}}^{\uptheta} } \right) = {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{sub - cooled}}^{\uptheta} } \right) - {\text{R}}\uptheta{\text{c}}_{\text{C}}$$
$${\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{H}}^{\uptheta} } \right) = {\text{R}}\uptheta\ln \left( {{\text{p}}_{\text{sub - cooled}}^{\uptheta} } \right) - {\text{R}}\uptheta{\text{c}}_{\text{H}}$$

Thus

$$\Delta \Delta {\text{G}}_{\text{s}} = - {\text{R}}\uptheta{\text{c}}_{\text{C}} + {\text{R}}\uptheta{\text{c}}_{\text{H}} = {\text{R}}\uptheta\left( {{\text{c}}_{\text{H}} - {\text{c}}_{\text{C}} } \right)$$

In the case of 2,6-syringealdehyde, the change in ΔGs on inclusion of ΔCp values relative to the value of the change in ΔGs values assuming constant ΔH terms, is (at 25 °C) +0.593*1.57 = +0.93 kcal/mol, meaning that the correction from VPsub-cooled liquid to VPsublimation would be smaller with inclusion of ΔCp terms. This value is based on estimated ΔCp values, which may be in error.

The additivity scheme reported by Chickos et al. [16] has some unusual features which make it a bit tricky to apply until one gets on to it. Accordingly this table is included to help the interested reader who wishes to apply the method (Tables 4, 5).

Table 4 Estimation of entropy of fusion
Table 5 Estimated heat capacities of vaporization

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthrie, J.P. SAMPL4, a blind challenge for computational solvation free energies: the compounds considered. J Comput Aided Mol Des 28, 151–168 (2014). https://doi.org/10.1007/s10822-014-9738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9738-y

Keywords

Navigation