Skip to main content

Advertisement

Log in

Stereotactic model of the electrical distribution within the internal globus pallidus during deep brain stimulation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is an established surgical technique for the treatment of movement disorders. The objective of this study was to propose a computational stereotactic model of the electrical distribution around the electrode within the targeted GPi in order to optimize parameter adjustment in clinical practice. The outline of the GPi can be defined precisely by using stereotactic magnetic resonance imaging (MRI) and from this it is possible to model its three-dimensional structure. The electrode and the distribution of the patient-specific parameters can then be co-registered with the GPi volume. By using this methodology, it is possible to visualize and measure the relationship between the electrical distribution of patient-specific parameters and the morphology of the GPi. The model could be applied in clinical practice to help determine the threshold for achieving a therapeutic effect and consequently may aid in optimizing parameter settings for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Astrom, M., Johansson, J. D., Hariz, M. I., Eriksson, O., & Wardell, K. (2006). The effect of cystic cavities on deep brain stimulation in the basal ganglia: a simulation-based study. Journal of Neural Engineering, 3(2), 132–138.

    Article  PubMed  Google Scholar 

  • Benabid, A. L., Chabardes, S., & Seigneuret, E. (2005). Deep-brain stimulation in Parkinson’s disease: Long-term efficacy and safety—What happened this year? Current Opinion in Neurology, 18(6), 623–630.

    Article  PubMed  Google Scholar 

  • Blinn, J. F. (1982). A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3), 235–256.

    Article  Google Scholar 

  • Bloch, I., Géraud, T., & Maître, H. (2003). Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition application to 3D brain imaging. Artificial Intelligence, 148, 141–175.

    Article  Google Scholar 

  • Bloomenthal, J., & Shoemake, K. (1991). Convolution surfaces. Computer Graphics, 25(4), 251–256.

    Article  Google Scholar 

  • Burke, R. E., Fahn, S., Marsden, C. D., Bressman, S. B., Moskowitz, C., & Friedman, J. (1985). Validity and reliability of a rating scale for the primary torsion dystonias. Neurology, 35(1), 73–77.

    PubMed  CAS  Google Scholar 

  • Butson, C. R., Cooper, S. E., Henderson, J. M., & McIntyre, C. C. (2007). Patient-specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage, 34(2), 661–670.

    Article  PubMed  Google Scholar 

  • Butson, C. R., & McIntyre, C. C. (2007). Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation. Clinical Neurophysiology, 118(8), 1889–1894.

    Article  PubMed  Google Scholar 

  • Ciofolo, C., & Barillot, C. (2005). Brain segmentation with competitive level sets and fuzzy control. Information Processing in Medical Imaging, 19, 333–344.

    PubMed  Google Scholar 

  • Collins, D. L., Holmes, C. J., Peters, T. M., & Evans, A. C. (1995). Automatic 3-D model-based neuroanatomical segmentation. Human Brain Mapping, 3(3), 190–208.

    Article  Google Scholar 

  • Colliot, O., Camara, O., & Bloch, I. (2006). Integration of fuzzy spatial relations in deformable models—Application to brain MRI segmentation. Pattern Recognition, 39, 1401–1414.

    Article  Google Scholar 

  • Coubes, P., Cif, L., El Fertit, H., Hemm, S., Vayssiere, N., Serrat, S., et al. (2004). Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: Long-term results. Journal of Neurosurgery, 101(2), 189–194.

    PubMed  Google Scholar 

  • Coubes, P., Echenne, B., Roubertie, A., Vayssiere, N., Tuffery, S., Humbertclaude, V., et al. (1999). Treatment of early-onset generalized dystonia by chronic bilateral stimulation of the internal globus pallidus. Apropos of a case. Neuro-Chirurgie, 45(2), 139–144.

    PubMed  CAS  Google Scholar 

  • Coubes, P., Roubertie, A., Vayssiere, N., Hemm, S., & Echenne, B. (2000). Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet, 355(9222), 2220–2221.

    Article  PubMed  CAS  Google Scholar 

  • Coubes, P., Vayssiere, N., El Fertit, H., Hemm, S., Cif, L., Kienlen, J., et al. (2002). Deep brain stimulation for dystonia. Surgical technique. Stereotactic and Functional Neurosurgery, 78(3–4), 183–191.

    Article  PubMed  Google Scholar 

  • Hariz, M. I. (2002). Complications of deep brain stimulation surgery. Movement Disorders, 17(Suppl 3), S162–S166.

    Article  PubMed  Google Scholar 

  • Hemm, S., Mennessier, G., Vayssiere, N., Cif, L., El Fertit, H., & Coubes, P. (2005). Deep brain stimulation in movement disorders: Stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. Journal of Neurosurgery, 103(6), 949–955.

    PubMed  Google Scholar 

  • Hemm, S., Vayssiere, N., Mennessier, G., Cif, L., Zanca, M., Ravel, P., et al. (2004). Evolution of brain impedance in dystonic patients treated by GPi electrical stimulation. Neuromodulation, 7(2), 67–75.

    Article  Google Scholar 

  • Hodaie, M., Wennberg, R. A., Dostrovsky, J. O., & Lozano, A. M. (2002). Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia, 43(6), 603–608.

    Article  PubMed  Google Scholar 

  • Krauss, J. K., Loher, T. J., Weigel, R., Capelle, H. H., Weber, S., & Burgunder, J. M. (2003). Chronic stimulation of the globus pallidus internus for treatment of non-dYT1 generalized dystonia and choreoathetosis: 2-year follow up. Journal of Neurosurgery, 98(4), 785–792.

    PubMed  Google Scholar 

  • Laitinen, L. V., Bergenheim, A. T., & Hariz, M. I. (1992). Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. Journal of Neurosurgery, 76(1), 53–61.

    PubMed  CAS  Google Scholar 

  • Lorensen, W., & Cline, H. (1987). Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics, 21(4), 163–169.

    Article  Google Scholar 

  • Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651–660.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., & Vitek, J. L. (2004). Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clinical Neurophysiology, 115(3), 589–595.

    Article  PubMed  Google Scholar 

  • Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96(3), 1569–1580.

    Article  PubMed  Google Scholar 

  • Morse, B., Yoo, T., Rheingans, P., Chen, D., & Subramaniam, K. R. (2001). Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions. Proceeding of the International Conference on Shape Modeling and Applications.

  • Nuttin, B. J., Gabriels, L., van Kuyck, K., & Cosyns, P. (2003). Electrical stimulation of the anterior limbs of the internal capsules in patients with severe obsessive-compulsive disorder: Anecdotal reports. Neurosurgery Clinics of North America, 14(2), 267–274.

    Article  PubMed  Google Scholar 

  • Pasko, A., Adzhiev, V., Sourin, A., & Savchenko, V. (1995). Function representation in geometric modeling: Concepts, implementation and applications. The Visual Computer, 11(8), 429–446.

    Article  Google Scholar 

  • Pitiot, A., Delingette, H., Thompson, P. M., & Ayache, N. (2004). Expert knowledge-guided segmentation system for brain MRI. NeuroImage, 23(Suppl 1), S85–S96.

    Article  PubMed  Google Scholar 

  • Starr, P. A., Vitek, J. L., DeLong, M., & Bakay, R. A. (1999). Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery, 44(2), 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Tisch, S., Zrinzo, L., Limousin, P., Bhatia, K. P., Quinn, N., Ashkan, K., et al. (2007). The effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 1314–1319.

    Article  PubMed  CAS  Google Scholar 

  • Vasques, X., Tancu, C., Cif, L., Biolsi, B., Maldonado, I., Bonafe, A., et al. (2008). Cerebral Magnetic resonance imaging feasibility in patients with implanted neurostimulation system for deep brain stimulation. The Open Magnetic Resonance Journal, 1(1), 1–8.

    Article  Google Scholar 

  • Vayssiere, N., Hemm, S., Cif, L., Picot, M. C., Diakonova, N., El Fertit, H., et al. (2002). Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. Journal of Neurosurgery, 96(4), 673–679.

    PubMed  Google Scholar 

  • Vayssiere, N., Hemm, S., Zanca, M., Picot, M. C., Bonafe, A., Cif, L., et al. (2000). Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. Journal of Neurosurgery, 93(5), 784–790.

    PubMed  CAS  Google Scholar 

  • Vayssiere, N., van der Gaag, N., Cif, L., Hemm, S., Verdier, R., Frerebeau, P., et al. (2004). Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. Journal of Neurosurgery, 101(2), 181–188.

    Article  PubMed  Google Scholar 

  • Wishart, H. A., Roberts, D. W., Roth, R. M., McDonald, B. C., Coffey, D. J., Mamourian, A. C., et al. (2003). Chronic deep brain stimulation for the treatment of tremor in multiple sclerosis: Review and case reports. Journal of Neurology, Neurosurgery, and Psychiatry, 74(10), 1392–1397.

    Article  PubMed  CAS  Google Scholar 

  • Xue, J. H., Ruan, S., Moretti, B., Revenu, M., & Bloyet, D. (2001). Knowledge-based segmentation and labelling of brain structures from MRI images. Pattern Recognition Letters, 22, 395–405.

    Article  Google Scholar 

  • Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(Suppl 3), S15–S21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from IBM France, Products and Solutions Support Center department (PSSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Coubes.

Additional information

Action Editor: Charles Wilson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasques, X., Cif, L., Hess, O. et al. Stereotactic model of the electrical distribution within the internal globus pallidus during deep brain stimulation. J Comput Neurosci 26, 109–118 (2009). https://doi.org/10.1007/s10827-008-0101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0101-y

Keywords

Navigation