Skip to main content
Log in

A self-adapting approach for the detection of bursts and network bursts in neuronal cultures

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Dissociated networks of neurons typically exhibit bursting behavior, whose features are strongly influenced by the age of the culture, by chemical/electrical stimulation or by environmental conditions. To help the experimenter in identifying the changes possibly induced by specific protocols, we developed a self-adapting method for detecting both bursts and network bursts from electrophysiological activity recorded by means of micro-electrode arrays. The algorithm is based on the computation of the logarithmic inter-spike interval histogram and automatically detects the best threshold to distinguish between inter- and intra-burst inter-spike intervals for each recording channel of the array. An analogous procedure is followed for the detection of network bursts, looking for sequences of closely spaced single-channel bursts. We tested our algorithm on recordings of spontaneous as well as chemically stimulated activity, comparing its performance to other methods available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MEA:

Micro-electrode array

BD:

Burst detection

NBD:

Network burst detection

DIV:

Days in vitro

BIC:

Bicuculline

APV:

D-2-amino-5-phosphonopentanoic acid

ISI:

Inter-spike interval

logISIH:

Logarithmic inter-spike interval histogram

ISIth:

Inter-spike interval threshold

IBeI:

Inter-burst event interval

logIBeIH:

Logarithmic inter-burst event interval histogram

IBeIth:

Inter-burst event interval threshold

newBD:

New burst detection algorithm

SE:

Selinger’s algorithm

CH:

Chiappalone’s algorithm

WA:

Wagenaar’s algorithm

GE:

Gourevitch-Eggermont’s algorithm

SEM:

Standard error of the mean

References

  • Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105, 25–37.

    Article  CAS  PubMed  Google Scholar 

  • Baruchi, I., Volman, V., Raichman, N., Shein, M., & Ben-Jacob, E. (2008). The emergence and properties of mutual synchronization in vitro coupled cortical networks. European Journal of Neuroscience, 28, 1825–1835.

    Article  PubMed  Google Scholar 

  • Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. The Journal of Neuroscience, 23(35), 11167–11177.

    CAS  PubMed  Google Scholar 

  • Canepari, M., Bove, M., Maeda, E., Cappello, M., & Kawana, A. (1997). Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity. Biological Cybernetics, 77(2), 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Chao, Z. C., Bakkum, D. J., Potter, S. M. (2008). Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior. PLOS Computational Biology, 4(3).

  • Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093(1), 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Chiappalone, M., Massobrio, P., & Martinoia, S. (2008). Network plasticity in cortical assemblies. European Journal of Neuroscience, 28(1), 221–237.

    Article  PubMed  Google Scholar 

  • Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 65–66, 653–662.

    Article  Google Scholar 

  • Cocatre-Zilgien, J. H., & Delcomyn, F. (1992). Identification of bursts in spike trains. Journal of Neuroscience Methods, 41, 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Corner, M. A., Van Pelt, J., Wolters, P. S., Baker, R. E., & Nuytinck, R. H. (2002). Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks—an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neuroscience and Biobehavioral Reviews, 26, 127–185.

    Article  CAS  PubMed  Google Scholar 

  • Cozzi, L., D’Angelo, P., & Sanguineti, V. (2006). Encoding of time-varying stimuli in population of cultured neurons. Biological Cybernetics, 94(5), 335–349.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT.

    Google Scholar 

  • Eytan, D., & Marom, S. (2006). Dynamics and effective topology underlying synchronization in networks of cortical neurons. The Journal of Neuroscience, 26(33), 8465–8476.

    Article  CAS  PubMed  Google Scholar 

  • Gourevitch, B., & Eggermont, J. J. (2007). A nonparametric approach for detection of bursts in spike trains. Journal of Neuroscience Methods, 160, 349–358.

    Article  PubMed  Google Scholar 

  • Gramowski, A., Jugelt, K., Weiss, D. G., & Gross, G. W. (2004). Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. European Journal of Neuroscience, 19(10), 2815–2825.

    Article  PubMed  Google Scholar 

  • Gross, G. W., Azzazy, H. M. E., Wu, M. C., & Rhodes, B. K. (1995). The use of neuronal networks on multielectrode arrays as biosensors. Biosensors & Bioelectronics, 10, 553–567.

    Article  CAS  Google Scholar 

  • Habets, A. M., Van Dongen, A. M., Van Huizen, F., & Corner, M. A. (1987). Spontaneous neuronal firing patterns in fetal rat cortical networks during development in vitro: a quantitative analysis. Experimental Brain Research, 69(1), 43–52.

    Article  CAS  Google Scholar 

  • Ham, M. I., Bettencourt, L. M., McDaniel, F. D., & Gross, G. W. (2008). Spontaneous coordinated activity in cultured networks: analysis of multiple ignition sites, primary circuits, and burst phase delay distributions. Journal of Computational Neuroscience, 24(3), 346–357.

    Article  PubMed  Google Scholar 

  • Jimbo, Y., Tateno, Y., & Robinson, H. P. C. (1999). Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophysical Journal, 76, 670–678.

    Article  CAS  PubMed  Google Scholar 

  • Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H. P. C., & Kawana, A. (1996). Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters, 206, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Legendy, C. R., & Salcman, M. (1985). Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. Journal of Neurophysiology, 53(4), 926–939.

    CAS  PubMed  Google Scholar 

  • Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., & Chiappalone, M. (2009). A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of Neuroscience Methods, 177, 241–249.

    Article  PubMed  Google Scholar 

  • Maeda, E., Robinson, H. P. C., & Kawana, A. (1995). The mechanism of generation and propagation of synchronized bursting in developing networks of cortical neurons. The Journal of Neuroscience, 15, 6834–6845.

    CAS  PubMed  Google Scholar 

  • Marom, S., & Shahaf, G. (2002). Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Quarterly Reviews of Biophysics, 35(1), 63–87.

    Article  PubMed  Google Scholar 

  • Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by burst-like patterns in multiple sensory maps. The Journal of Neuroscience, 18(6), 2283–2300.

    CAS  PubMed  Google Scholar 

  • Pasquale, V., Massobrio, P., Bologna, L. L., Chiappalone, M., & Martinoia, S. (2008). Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience, 153(4), 1354–1369.

    Article  CAS  PubMed  Google Scholar 

  • Raichman, N., & Ben-Jacob, E. (2008). Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks. Journal of Neuroscience Methods, 170(1), 96–110.

    Article  PubMed  Google Scholar 

  • Reinagel, P., Godwin, D., Sherman, S. M., & Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology, 81, 2558–2569.

    CAS  PubMed  Google Scholar 

  • Rolston, J. D., Wagenaar, D. A., & Potter, S. M. (2007). Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience, 148, 294–303.

    Article  CAS  PubMed  Google Scholar 

  • Segev, R., Baruchi, I., Hulata, E., & Ben-Jacob, E. (2004). Hidden neuronal correlations in cultured networks. Physical Review Letters, 92(11), 1181021–1181024.

    Article  Google Scholar 

  • Selinger, J. V., Kulagina, N. V., O’Shaughnessy, T. J., Ma, W., & Pancrazio, J. J. (2007). Methods for characterizing interspike intervals and identifying bursts in neuronal activity. Journal of Neuroscience Methods, 162, 64–71.

    Article  PubMed  Google Scholar 

  • Shahaf, G., & Marom, S. (2001). Learning in networks of cortical neurons. The Journal of Neuroscience, 21, 8782–8788.

    CAS  PubMed  Google Scholar 

  • Tam, D. C. (2002). An alternate burst analysis for detecting intra-burst firings based on inter-burst periods. Neurocomputing, 44–46, 1155–1159.

    Article  Google Scholar 

  • Turnbull, L., Dian, E., & Gross, G. W. (2005). The string method of burst identification in neuronal spike trains. Journal of Neuroscience Methods, 145(1–2), 23–35.

    Article  PubMed  Google Scholar 

  • Vajda, I., van Pelt, J., Wolters, P., Chiappalone, M., Martinoia, S., van Someren, E., et al. (2008). Low-frequency stimulation induces stable transitions in stereotypical activity in cortical networks. Biophysical Journal, 94, 5028–5039.

    Article  CAS  PubMed  Google Scholar 

  • van Pelt, J., Corner, M. A., Wolters, P. S., Rutten, W. L. C., & Ramakers, G. J. A. (2004). Long-term stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multi-electrode arrays. Neuroscience Letters, 361(1–3), 86–89.

    PubMed  Google Scholar 

  • van Pelt, J., Vajda, I., Wolters, P. S., Corner, M. A., & Ramakers, G. J. A. (2005). Dynamics and plasticity in developing neural networks in vitro. Progress in Brain Research, 147, 171–188.

    Article  Google Scholar 

  • Wagenaar, D. A., DeMarse, T. B., Potter, S. M. (2005). MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. 2nd Intl. IEEE EMBS Conference on Neural Engineering, Washington, D.C., USA.

  • Wagenaar, D. A., Madhavan, R., Pine, J., & Potter, S. M. (2005). Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. The Journal of Neuroscience, 25(3), 680–688.

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar, D. A., Pine, J., Potter, S. M. (2006). An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 7(11).

Download references

Acknowledgments

The authors wish to thank Dr. Mariateresa Tedesco for excellent culture preparation and maintenance and for providing images for Fig. 1(a). The authors are very grateful to Dr Luca Leonardo Bologna, who provided the recordings of spontaneous activity during development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Pasquale.

Additional information

Action Editor: Rob Kass

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

A self-adapting approach for the detection of bursts and network bursts in neuronal cultures (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquale, V., Martinoia, S. & Chiappalone, M. A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. J Comput Neurosci 29, 213–229 (2010). https://doi.org/10.1007/s10827-009-0175-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0175-1

Keywords

Navigation