Skip to main content
Log in

A mathematical modeling study of inter-segmental coordination during stick insect walking

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The biomechanical conditions for walking in the stick insect require a modeling approach that is based on the control of pairs of antagonistic motoneuron (MN) pools for each leg joint by independent central pattern generators (CPGs). Each CPG controls a pair of antagonistic MN pools. Furthermore, specific sensory feedback signals play an important role in the control of single leg movement and in the generation of inter-leg coordination or the interplay between both tasks. Currently, however, no mathematical model exists that provides a theoretical approach to understanding the generation of coordinated locomotion in such a multi-legged locomotor system. In the present study, I created such a theoretical model for the stick insect walking system, which describes the MN activity of a single forward stepping middle leg and helps to explain the neuronal mechanisms underlying coordinating information transfer between ipsilateral legs. In this model, CPGs that belong to the same leg, as well as those belonging to different legs, are connected by specific sensory feedback pathways that convey information about movements and forces generated during locomotion. The model emphasizes the importance of sensory feedback, which is used by the central nervous system to enhance weak excitatory and inhibitory synaptic connections from front to rear between the three thorax-coxa-joint CPGs. Thereby the sensory feedback activates caudal pattern generation networks and helps to coordinate leg movements by generating in-phase and out-of-phase thoracic MN activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Akay, T., & Büschges, A. (2006). Load signals assist the generation of movement dependent reflex reversal in the femur-tibia joint of stick insects. Journal of Neurophysiology, 96, 3532–3537.

    Article  PubMed  Google Scholar 

  • Akay, T., Bässler, U., & Büschges, A. (2001). The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Journal of Neurophysiology, 85, 594–604.

    PubMed  CAS  Google Scholar 

  • Akay, T., Haehn, S., Schmitz, J., & Büschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92, 42–51.

    Article  PubMed  Google Scholar 

  • Akay, T., McVea, D. A., Tachibana, A., & Pearson, K. G. (2006). Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Experimental Brain Research, 175, 211–222.

    Article  CAS  Google Scholar 

  • Akay, T., Ludwar, B. C., Goeritz, M., Schmitz, J., & Büschges, A. (2007). Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. Journal of Neuroscience, 27, 3285–3294.

    Article  PubMed  CAS  Google Scholar 

  • Bässler, U. (1977). Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. Journal of Comparative Physiology A, 121, 99–113.

    Article  Google Scholar 

  • Bässler, U. (1986). Afferent control of walking movements in the stick insect Cuniculina impigra. Journal of Comparative Physiology A, 158, 345–349.

    Article  Google Scholar 

  • Bässler, U. (1988). Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. Journal of Experimental Biology, 136, 125–147.

    Google Scholar 

  • Bässler, U., & Büschges, A. (1998). Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Research Reviews, 27, 65–88.

    Article  PubMed  Google Scholar 

  • Borgmann, A., Scharstein, H., & Büschges, A. (2007). Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98, 1685–1696.

    Article  PubMed  Google Scholar 

  • Borgmann, A., Hooper, S. L., & Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. Journal of Neuroscience, 29, 2972–2983.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, M. (1996). The neurobiology of an insect brain. Oxford: Oxford University Press.

    Google Scholar 

  • Büschges, A. (1995). Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. Journal of Neurobiology, 27, 488–512.

    Article  PubMed  Google Scholar 

  • Büschges, A. (1998). Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Research, 783, 262–271.

    Article  PubMed  Google Scholar 

  • Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. Journal of Neurophysiology, 93, 1127–1135.

    Article  PubMed  Google Scholar 

  • Büschges, A., & El Manira, A. (1998). Sensory pathways and their modulation in the control of locomotion. Current Opinion in Neurobiology, 8, 733–739.

    Article  PubMed  Google Scholar 

  • Büschges, A., & Gruhn, M. (2008). Mechanosensory feedback in walking: from joint control to locomotor patterns. Advances in Insect Physiology, 34, 193–230.

    Article  Google Scholar 

  • Büschges, A., & Schmitz, J. (1991). Nonspiking pathways opposing the resistance reflex in the subcoxal joint of stick insects. Journal of Neurobiology, 22, 224–237.

    Article  PubMed  Google Scholar 

  • Büschges, A., Kittmann, R., & Schmitz, J. (1994). Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 174, 685–700.

    Article  Google Scholar 

  • Büschges, A., Schmitz, J., & Bässler, U. (1995). Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of Experimental Biology, 198, 435–456.

    Google Scholar 

  • Büschges, A., Ludwar, B. C., Bucher, D., Schmidt, J., & DiCaprio, R. A. (2004). Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience, 12, 1856–1862.

    Article  Google Scholar 

  • Büschges, A., Akay, T., Gabriel, J. P., & Schmidt, J. (2008). Organizing network action for locomotion: insights from studying insect walking. Brain Research Review, 57, 162–171.

    Article  Google Scholar 

  • Calabrese, R. L. (1995). Half-center oscillators underlying rhythmic movements. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 444–447). Cambridge, MA: MIT press.

    Google Scholar 

  • Cattaert, D., & LeRay, D. (2001). Adaptive motor control in crayfish. Progress in Neurobiology, 63, 199–240.

    Article  PubMed  CAS  Google Scholar 

  • Cruse, H. (1980). A quantitative model of walking incorporating central and peripheral influences. Biological Cybernetics, 37, 136.

    Google Scholar 

  • Cruse, H. (1985a). Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355.

    Google Scholar 

  • Cruse, H. (1985b). Which parameters control the leg movement of a walking insect? II. The start of the swing phase. Journal of Experimental Biology, 116, 357–362.

    Google Scholar 

  • Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neuroscience, 13, 15–21.

    Article  CAS  Google Scholar 

  • Cruse, H., & Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369.

    Google Scholar 

  • Cruse, H., Kindermann, T., Schumm, M., Dean, J., & Schmitz, J. (1998). Walknet—a biologically inspired network to control six-legged walking. Neural Networks, 1, 1435–1447.

    Article  Google Scholar 

  • Cruse, H., et al. (2000). A simple neural network for the control of a six-legged walking system. In P. Crago & J. Winters (Eds.), Biomechanics and neural control of posture and movement (pp. 231–239). New York: Springer.

    Google Scholar 

  • Daun, S., Rybak, I. A., & Rubin, J. (2009). The response of a half-center oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.

    Article  PubMed  Google Scholar 

  • Dean, J., & Wendler, G. (1984). Stick insect locomotion on a wheel: patterns of stopping and starting. Journal of Experimental Biology, 110, 203–216.

    Google Scholar 

  • Delcomyn, F. (1971). The locomotion of the cockroach Periplaneta Americana. Journal of Experimental Biology, 54, 443–452.

    Google Scholar 

  • Delcomyn, F. (1989). Walking in the American cockroach: the timing of motor activity in the legs during straight walking. Biological Cybernetics, 60, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Driesang, R. B., & Büschges, A. (1993). The neural basis of catalepsy in the stick insect. IV. Properties of nonspiking interneurons. Journal of Comparative Physiology A, 173, 445–454.

    Article  Google Scholar 

  • Dürr, V., Schmitz, J., & Cruse, H. (2004). Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure & Development, 33, 1–13.

    Article  Google Scholar 

  • Duysens, J., Clarac, F., & Cruse, H. (2000). Load-regulating mechanisms in gait and posture: comparative aspects. Physiological Reviews, 80, 83–133.

    PubMed  CAS  Google Scholar 

  • Ekeberg, Ö., & Pearson, K. G. (2005). Computer simulation of stepping in the hind legs of the cat: an examination of the mechanisms regulating the stance-to-swing transition. Journal of Neurophysiology, 94, 4256–4268.

    Article  PubMed  Google Scholar 

  • Ekeberg, Ö., Blümel, M., & Büschges, A. (2004). Dynamic simulation of stick insect walking. Arthropod Structure & Development, 33, 287–300.

    Article  Google Scholar 

  • Fischer, H., Schmidt, J., & Büschges, A. (2001). Pattern generation for walking and searching movements of a stick insect leg I. Coordination of motor activity. Journal of Neurophysiology, 85, 341–353.

    PubMed  CAS  Google Scholar 

  • Foth, E., & Bässler, U. (1985a). Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. I. General results and 1:1-coordination. Biological Cybernetics, 51, 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Foth, E., & Bässler, U. (1985b). Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. II. Leg Coordination when step-frequencies differ from leg to leg. Biological Cybernetics, 51, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Gal, R., & Libersat, F. (2006). New vistas on the initiation and maintenance of insect motor behaviors revealed by specific lesions of the head ganglia. Journal of Comparative Physiology A, 192, 1003–1020.

    Article  Google Scholar 

  • Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). Journal of Comparative Physiology, 81, 23–52.

    Article  Google Scholar 

  • Graham, D. (1977). Simulation of a model for the coordination of leg movement in free walking insects. Biological Cybernetics, 26, 187–198.

    Article  Google Scholar 

  • Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology, 18, 31–140.

    Article  Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In V. B. Brooks (Ed.), Handbook of physiology, Sect 1: The Nervous System vol. II: motor control (pp. 1179–1236). Maryland: Waverly Press.

    Google Scholar 

  • Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Reviews, 4, 573–586.

    Article  PubMed  CAS  Google Scholar 

  • Grillner, S., Markram, H., De Schutter, E., Silberberg, G., & LeBeau, F. E. N. (2005). Microcircuits in action—from CPGs to neocortex. Trends in Neurosciences, 28, 525–533.

    Article  PubMed  CAS  Google Scholar 

  • Gruhn, M., von Uckermann, G., Westmark, S., Woznitza, A., Büschges, A., & Borgmann, A. (2009). Control of stepping velocity in the stick insect Carausius morosus. Journal of Neurophysiology, 102, 1180–1192.

    Article  PubMed  Google Scholar 

  • Haridas, C., & Zehr, E. P. (2003). Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. Journal of Neurophysiology, 90, 2850–2861.

    Article  PubMed  Google Scholar 

  • Hess, D., & Büschges, A. (1999). Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. Journal of Neurophysiology, 81, 1856–1865.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in a nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Holmes, P. J., Full, R. J., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomtion: models, analysis, and challenges. SIAM Review, 48(2), 207–304.

    Article  Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Preprint of Neural Networks, 21, 642–653.

    Article  Google Scholar 

  • Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT press, Massachusetts Institute of Technology.

    Google Scholar 

  • Johnston, R. M., & Levine, R. B. (2002). Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine. Invertebrate Neuroscience, 4, 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Katz, P. S., & Hooper, S. L. (2007). Invertebrate central pattern generators. In G. North & R. J. Greenspan (Eds.), Invertebrate neurobiology (pp. 251–280). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Laurent, G., & Burrows, M. (1989a). Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 9, 3019–3029.

    PubMed  CAS  Google Scholar 

  • Laurent, G., & Burrows, M. (1989b). Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Journal of Neuroscience, 9, 3030–3039.

    PubMed  CAS  Google Scholar 

  • Ludwar, B. C., Westmark, S., Büschges, A., & Schmidt, J. (2005). Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front leg walking. Journal of Neurophysiology, 93, 1255–1265.

    Article  PubMed  Google Scholar 

  • Mischenko, E., Kolesov, Y., Kolesov, A., & Rozov, N. (1994). Asymptotic methods in singularly perturbed systems. New York: Consultants Bureau.

    Google Scholar 

  • Orlovsky, G. N., Deliagina, T. G., & Grillner, S. (1999). Neuronal control of locomotion. Oxford: Oxford Univ Press.

    Google Scholar 

  • Pearson, K. G. (2004). Generating the walking gait: role of sensory feedback. Progress in Brain Research, 143, 123–129.

    Article  PubMed  Google Scholar 

  • Pearson, K., Ekeberg, Ö., & Büschges, A. (2006). Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends in Neurosciences, 29, 625–631.

    Article  PubMed  CAS  Google Scholar 

  • Prochazka, A. (1996). Proprioceptive feedback and movement regulation. In L. Rowell & J. T. Sheperd (Eds.), Handbook of physiology (pp. 89–127). New York: American Physiological Society.

    Google Scholar 

  • Roeder, K. D. (1937). The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.). Journal of Experimental Zoology, 76, 353–374.

    Article  Google Scholar 

  • Samara, R. F., & Currie, S. N. (2007). Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming. Journal of Neurophysiology, 98, 2223–2231.

    Article  PubMed  Google Scholar 

  • Satterlie, R. A. (1985). Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science, 229, 402–404.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, J. (1986a). Properties of the feedback system controlling the coxa-trochanter joint in the stick insect Carausius morosus. Biological Cybernetics, 55, 35–42.

    Article  Google Scholar 

  • Schmitz, J. (1986b). The depressor trochanteris motoneurones and their role in the coxa-throchanteral feedback loop in the stick insect Carausius morosus. Biological Cybernetics, 55, 25–34.

    Article  Google Scholar 

  • Schmitz, J., & Stein, W. (2000). Convergence of load and movement information onto leg motoneurons in insects. Journal of Neurobiology, 43, 424–436.

    Article  Google Scholar 

  • Selverston, A. I., & Moulins, M. (1985). Oscillatory neural networks. Annual Review Physiology, 47, 29–48.

    Article  CAS  Google Scholar 

  • Skinner, F., Kopell, N., & Marder, E. (1994). Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. Journal of Computational Neuroscience, 1, 69–87.

    Article  PubMed  CAS  Google Scholar 

  • Sponberg, S., & Full, R. J. (2008). Neuromechanical response of musco-skeletal structures in cockroaches during rapid running on rough terrain. Journal of Experimental Biology, 211, 446.

    Article  Google Scholar 

  • Stein, W., Büschges, A., & Bässler, U. (2006). Intersegmental information flow in the thoracic nerve cord of the stick insect as revealed by removal of gabaergic inhibition. Journal of Neurobiology, 66, 1253–1269.

    Article  PubMed  Google Scholar 

  • Van Drongelen, W., Koch, H., Elsen, F. P., Lee, H. C., Mrejeru, A., Doren, E., et al. (2006). The role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. Journal of Neurophysiology, 96, 2564–2577.

    Article  PubMed  Google Scholar 

  • Wendler, G. (1968). Ein Analogmodell der Beinbewegung eines laufenden Insekts. Kybernetik, 18, 67–74.

    Google Scholar 

  • Wendler, G. (1978). Lokomotion: das Ergebnis zentral-peripherer Interaktion. Verhandlungen der Deutschen Zoologischen Gesellschaft, 80–96.

  • Westmark, S., Oliveira, E. E., & Schmidt, J. (2009). Pharmacological analysis of tonic activity in motoneurons during stick insect walking. Journal of Neurophysiology, 102, 1049–1061.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, G., Masino, M. A., & Harris-Warrick, R. M. (2007). Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. Journal of Neuroscience, 27, 4507–4518.

    Article  PubMed  CAS  Google Scholar 

  • Zill, S. N., Schmitz, J., & Büschges, A. (2004). Leg sensors and sensory-motor interactions. Arthropod Structure & Development, 33, 273–286.

    Article  Google Scholar 

  • Zill, S. N., Keller, B. R., & Duke, E. R. (2009). Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology, 101, 2297–2304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I like to thank Drs. A. Borgmann, A. Büschges, H. Cruse, M. Gruhn, F. Pasemann, J. Schmidt and T. I. Toth for stimulating discussions in the course of the work.

Grant

This study was supported by Deutsche Forschungsgemeinschaft grant DA1182/1-1 and by generous start-up support from the University of Cologne, Department of Animal Physiology, Cologne, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Daun-Gruhn.

Additional information

Action Editor: Frances K. Skinner

Appendices

Appendix

I summarized some central notations used in this paper in the following table:

Table 1 Some notations used in the paper

Interneuron model using the persistent sodium current

The ordinary differential equations for this model are

$$ \begin{array}{*{20}{c}} {{C_m}v\prime = - {I_{NaP}} - {I_L} - {I_{syn}} - {I_{app}},} \hfill \\{h\prime = ({h_\infty }(v) - h)/{\tau_h}(v),} \hfill \\{s\prime = \alpha (1 - s){s_\infty }(v) - \beta s,} \hfill \\\end{array} $$
(A1)

with associated functions

$$ \begin{array}{*{20}{c}} {{I_{syn}} = {g_{syn}}s(v - {e_{vyn}}),} \hfill \\{{I_{NaP}} = {g_{nap}}{m_\infty }(v)h(v - {e_{nap}}),} \hfill \\{{I_L} = {g_l}(v - {e_l}),} \hfill \\{{I_{app}} = {g_{app}}v,} \hfill \\{{h_\infty }(v) = 1/(1 + \exp ((v - {\theta_h})/{\sigma_h})),} \hfill \\{{s_\infty }(v) = 1/(1 + \exp ((v - {\theta_{syn}})/{\sigma_{syn}})),} \hfill \\{{\tau_h}(v) = 1/(\varepsilon \cosh ((v - {\theta_h})/{\sigma_h}/2)),} \hfill \\{{m_\infty }(v) = 1/(1 + \exp ((v - {\theta_m})/{\sigma_m})),} \hfill \\\end{array} $$

where

$$ \begin{array}{*{20}{c}} {{{\hbox{C}}_{\rm{m}}} = 0.{21,}\,{{\hbox{g}}_{\rm{nap}}} = {10,}\,{{\hbox{g}}_{\rm{l}}} = {2}{.8,}\,{{\hbox{e}}_{\rm{nap}}} = {50,}\,{{\hbox{e}}_{\rm{l}}} = - {65,}\,{{\hbox{v}}_{\rm{syn}}} = - {80,}\,{\theta_{\rm{m}}} = - {37,}\,{\sigma_{\rm{m}}} = - {6,}\,{\theta_{\rm{h}}} = - {30,}\,{\sigma_{\rm{h}}} = {6,}} \hfill \\{\varepsilon = {0}{.01,}\,{\theta_{\rm{syn}}} = - {43,}\,{\sigma_{\rm{syn}}} = - {0}{.1,}\,{{\hbox{g}}_{\rm{syn}}} = {1,}\,{{\hbox{g}}_{\rm{app}}} = {0}{.19,}\,\alpha = {1,}\,\beta = {1}{.}} \hfill \\\end{array} $$

Since I assumed the synaptic coupling to be fast, I set \( s = {s_\infty } \) in the simulations.

The following assumptions are made on system (A1):

(H1) For i ∈ {1,2} and fixed sI s , the v-nullcline, \( \{ ({v_i},{h_i}):{F_i}({v_i},{h_i},{s_j}) = 0\}, \) defines a cubic shaped curve, composed of left, middle, and right branches, in the (v i ,h i ) phase plane.

Dropping the subscript j from s j , denote the branches of F i = 0 by \( v = {v^i}_L(h,s) \),\( v = {v^i}_M(h,s) \), \( v = {v^i}_R(h,s) \), with \( {v^i}_L < {v^i}_M < {v^i}_R \) for each (h,s) on which all three functions are defined. The variable s corresponds to the synaptic input received by the cell, driven by the voltage of the other cell. The drive current to each cell, \( {g_{app,i}}({v_i} - {v_{app}}) \), is also treated as synaptic but is independent of the other cell in the network.

Specifically, under (H1), for fixed sI s , the left branch \( ({v_L}(h,s),h) \) meets the middle branch \( ({v_M}(h,s),h) \) in the left knee of the v-nullcline, while the middle branch meets the right branch \( ({v_R}(h,s),h) \) in the right knee. For each sI s , let \( {p_{LK}}(s) = ({v_{LK}}(s),{h_{LK}}(s)) \) denote the left knee of the v-nullcline and, similarly, let \( {p_{RK}}(s) = ({v_{RK}}(s),{h_{RK}}(s)) \) denote the right knee of the v-nullcline.

The dotted and dashed cubic shaped curves in Fig. 3(a) represent the v-nullclines for s=smax and s=0, respectively.

(H2) For i ∈ {1,2}, the h-nullcline, \( \{ ({v_i},{h_i}):{g_i}({v_i},{h_i}) = 0\} \), is a monotonic curve in the (v i ,h i ) plane. For fixed \( s \in [0,{s_{\max }}[ \), the h-nullcline intersects F i = 0 at a unique point \( {p_{FP}}(s) = ({v_{FP}}(s),{h_{FP}}(s)) \) on the right branch of the corresponding v-nullcline.

A cell is defined as excitable if the intersection point of the h- and v-nullcline p FP (0) lies on the left branch of the v-nullcline, \( \{ (v,h):v = {v_L}(h,0)\} \), as oscillatory if p FP (0) lies on the middle branch of the v-nullcline, \( \{ (v,h):v = {v_M}(h,0)\} \); in this case, the cell will intrinsically oscillate, yielding a reduced representation of bursting activity and finally, a cell is tonic if p FP (0) lies on the right, most depolarized branch of the v-nullcline, \( \{ (v,h):v = {v_R}(h,0)\} \), yielding a reduced representation of tonic spiking, which will be the case in this modeling study. The latter case is illustrated in Fig. 3(a), in which the h-nullcline (solid monotonic curve) intersects each v-nullcline in a unique point on the right branch for s<smax.

One further restriction has to be made on the system (A1):

(H3) For i ∈ {1,2} and s = s max, the h-nullcline intersects F i = 0 either at a unique point p FP,R (s max) on the right branch of the corresponding v-nullcline or at three different points one on the left, one on the middle and one on the right branch of the corresponding v-nullcline, p FP,L (s max), p FP,M (s max), p FP,R (s max), depending on the extra drive g app,i

These two cases are illustrated in Figs. 2(a) and 3(a), respectively.

In a neuron, a bursting solution alternates repeatedly between silent phases of relatively constant, low voltage and active phases featuring voltage spikes, which are rapid voltage oscillations of significant amplitude. A model of the form (A1) can be obtained from a model bursting neuron by omitting spike-generating currents but maintaining a current that allows for transitions to an elevated voltage state. In this model, a bursting solution consists of an oscillation composed of silent phases, with \( {v_i} \approx {v^i}_L(h,s) \), alternating with active phases, with \( {v_i} \approx {v^i}_R(h,s) \).

This situation bears similarities to the activity of non-spiking interneurons in the stick insect central neural networks during rhythmic activity, which are known to participate in rhythm generation in a walking stick insect (Büschges et al. 1994).

2.1 Slow and fast subsystems of the interneuron model

In our previous work (Daun et al. 2009) we established conditions under which periodically oscillating solutions can be constructed for system (A1) under the structural hypotheses (H1), (H2) and (H3) and the parameter choices given above, in the singular limit of ε ↓ 0. Results on geometric singular perturbation theory suggest that this construction will yield the existence of nearby oscillating solutions for ε > 0 sufficiently small (Mischenko et al. 1994).

For system (A1), there are associated fast and slow subsystems. The fast subsystem is obtained by setting ε = 0 directly and thus it takes the form

$$ \begin{array}{*{20}{c}} {{C_m}{v_i}\prime = {F_i}({v_i},{h_i},{s_j}),j \ne i,} \hfill \\{{h_i}\prime = 0,} \hfill \\{{s_i}\prime = \alpha {s_\infty }({v_i})(1 - {s_i}) - \beta {s_i}.} \hfill \\\end{array} $$
(A2)

Recall that i ∈ {1,2}, so Eq. (A2) is a system of six equations.

To define various slow subsystems, set τ = εt and let “dot” denote differentiation with respect to τ. Under this rescaling of time, system (A1) becomes, with i ∈ {1,2}

$$ \begin{array}{*{20}{c}} {\varepsilon {C_m}{{\dot{v}}_i} = {F_i}({v_i},{h_i},{s_j}),j \ne i,} \hfill \\{{{\dot{h}}_i} = {g_i}({v_i},{h_i}),} \hfill \\{\varepsilon {{\dot{s}}_i} = \alpha {s_\infty }({v_i})(1 - {s_i}) - \beta {s_i}.} \hfill \\\end{array} $$
(A3)

The slow subsystems are obtained from system (A3) by setting ε = 0, solving the algebraic equations, and inserting the results into the h-equation. This process yields, for each i ∈ {1,2},

$$ {\dot{h}_i} = {g_i}({v_X}({h_i},{s_j}),{h_i}),j \ne i, $$
(A4)

for X ∈ {L,M,R}. In Eq. (A4), s j depends on v j and hence is a function of h j .

Consider the limit of σ syn ↓ 0 in the equation \( {s_\infty }(v) = 1/(1 + \exp ((v - {\theta_{syn}})/{\sigma_{syn}})) \). Since the branch v M (h,s) is unstable with respect to the fast subsystem, there are four distinct slow subsystems (A4) that could theoretically be relevant. Two of these are obtained when cell i is silent and cell j active for i = 1 or i = 2, and each of these takes the form

$$ {\dot{h}_i} = {G_L}({h_i}): = g({v_L}({h_i},{s_{\max }}),{h_i}), $$
(A5)
$$ {\dot{h}_j} = {G_R}({h_j}): = g({v_R}({h_j},0),{h_j}). $$
(A6)

The other two subsystems involve the cases that both cells are silent or active. A key point is that the singular solution consists of a concatenation of solutions of systems (A2) and (A5)–(A6) for i = 1,2. Projected to each (v,h)-plane, the solutions to system (A2) consist of jumps between branches of v-nullclines for different values of s, while the solutions to the slow subsystems take the form of pieces of these nullclines. Although the slow subsystems above correspond to σ syn ↓ 0, solutions obtained in this limit persist for small \( |{\sigma_{syn}}| > 0 \) for the persistent sodium model.

Simplified motoneuron model

The ordinary differential equation of this 1-dimensional model is given by

$$ {C_m}v\prime = - {I_{NaP}} - {I_L} - {I_{syn}} - {I_{app}}, $$

with associated functions and parameters as above except

$$ {I_{NaP}} = {g_{nap}}{m_\infty }(v){h_\infty }(v)(v - {e_{nap}}). $$

The coupling between the interneurons forming the half-center CPG and the motoneurons as well as the intra- and inter-leg couplings are as described in the main text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daun-Gruhn, S. A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci 30, 255–278 (2011). https://doi.org/10.1007/s10827-010-0254-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0254-3

Keywords

Navigation