Skip to main content
Log in

Periodic Plus Smooth Image Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

When the Discrete Fourier Transform of an image is computed, the image is implicitly assumed to be periodic. Since there is no reason for opposite borders to be alike, the “periodic” image generally presents strong discontinuities across the frame border. These edge effects cause several artifacts in the Fourier Transform, in particular a well-known “cross” structure made of high energy coefficients along the axes, which can have strong consequences on image processing or image analysis techniques based on the image spectrum (including interpolation, texture analysis, image quality assessment, etc.). In this paper, we show that an image can be decomposed into a sum of a “periodic component” and a “smooth component”, which brings a simple and computationally efficient answer to this problem. We discuss the interest of such a decomposition on several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averbuch, A., Israeli, M., Vozovoi, L.: A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933–952 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, H.H., Denny, J.L., Wagner, R.F., Myers, K.J.: Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. J. Opt. Soc. Am. A 12(5), 834–852 (1995)

    Article  Google Scholar 

  3. Beaudoin, N., Beauchemin, S.: An accurate discrete Fourier transform for image processing. In: Proceedings of International Conference on Pattern Recognition, vol. 3, pp. 935–939 (2002)

    Google Scholar 

  4. Blanchet, G., Moisan, L., Rougé, B.: Measuring the global phase coherence of an image. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 1176–1179 (2008)

    Google Scholar 

  5. Blanchet, G., Moisan, L., Rougé, B.: Automatic detection of well sampled images via a new ringing measure. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1030–1033 (2010)

    Google Scholar 

  6. Briggs, W.L., Henson, V.E.: The DFT: An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  7. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Castro, E., Morandi, C.: Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Anal. 9(5), 700–703 (1987)

    Article  Google Scholar 

  9. Desolneux, A., Ladjal, S., Moisan, L., Morel, J.-M.: Dequantizing image orientation. IEEE Trans. Image Process. 11(10), 1129–1140 (2002)

    Article  MathSciNet  Google Scholar 

  10. Guichard, F., Malgouyres, F.: Total Variation based interpolation. Proc. Eur. Signal Process. Conf. 3, 1741–1744 (1998)

    Google Scholar 

  11. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  12. He, D., Sun, Q.: A practical print-scan resilient watermarking scheme. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 257–260 (2005)

    Google Scholar 

  13. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. 207, 187–217 (1980)

    Article  Google Scholar 

  14. Hutchison, L.A., Barrett, W.A.: Fourier-Mellin registration of line-delineated tabular document images. Int. J. Doc. Anal. Recognit. 8(2–3), 87–110 (2006)

    Google Scholar 

  15. Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proc. Int. Conf. Cybernetics and Society, pp. 163–165 (1975)

    Google Scholar 

  16. Larrey-Ruiz, J., Verdu-Monedero, R., Morales-Sanchez, J.: A Fourier domain framework for variational image registration. J. Math. Imaging Vis. 32(1), 57–72 (2008)

    Article  MathSciNet  Google Scholar 

  17. Leprince, S., Barbot, S., Ayoub, F., Avouac, J.-P.: Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45(6), 1529–1558 (2007)

    Article  Google Scholar 

  18. Lin, C.-Y., Wu, Min, Bloom, J.A., Cox, I.J., Miller, M.L., Lui, Yui Man: Rotation, scale, and translation resilient watermarking for images. IEEE Trans. Image Process. 10(5), 767–782 (2001)

    Article  MATH  Google Scholar 

  19. Lohmann, A.W., Mendelovic, D., Shabtay, G.: Significance of phase and amplitude in the Fourier domain. J. Opt. Soc. Am. A 14, 2901–2904 (1997)

    Article  Google Scholar 

  20. Nill, N.B., Bouzas, B.H.: Objective image quality measure derived from digital image power spectra. Opt. Eng. 31(4), 813–825 (1992)

    Article  Google Scholar 

  21. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  22. Saito, N., Remy, J.-F.: The polyharmonic local sine transform: a new tool for local image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal. 20(1), 41–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37(1), 10–21 (1949)

    MathSciNet  Google Scholar 

  24. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2. http://live.ece.utexas.edu/research/quality (2005)

  25. Bugao, Xu.: Identifying fabric structures with fast Fourier transform techniques. Tex. Res. J. 66(8), 496–506 (1996)

    Article  Google Scholar 

  26. Min, Xu., Varshney, P.K., Ruixin, Niu: A subspace method for Fourier based image registration, Asilomar Conference on Signals, Systems and Computers, pp. 425–429 (2006)

    Google Scholar 

  27. Yamatani, K., Saito, N.: Improvement of DCT-based compression algorithms using poisson equation. IEEE Trans. Image Process. 15(12), 3672–3689 (2006)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J., Saito, N., Wang, Y.: PHLST5: a practical and improved version of polyharmonic local sine transform. J. Math. Imaging Vis. 30(1), 23–41 (2008)

    Article  MathSciNet  Google Scholar 

  29. Xiao-Qun, Zhang, Froment, J.: Total variation based Fourier reconstruction and regularization for computer tomography. Nucl. Sci. Sympos. Conf. Record 4, 2332–2336 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Moisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moisan, L. Periodic Plus Smooth Image Decomposition. J Math Imaging Vis 39, 161–179 (2011). https://doi.org/10.1007/s10851-010-0227-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0227-1

Keywords

Navigation