Skip to main content
Log in

Cell signaling, post-translational protein modifications and NMR spectroscopy

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

A Protocol for this article was published on 27 June 2013

Abstract

Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham SJ, Kobayashi T, Solaro RJ, Gaponenko V (2009) Differences in lysine pKa values may be used to improve NMR signal dispersion in reductively methylated proteins. J Biomol NMR 43(4):239–246

    Google Scholar 

  • Alavi A, Axford JS (2008) Sweet and sour: the impact of sugars on disease. Rheumatology (Oxf) 47(6):760–770

    Google Scholar 

  • Amniai L, Lippens G, Landrieu I (2011) Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach. Biochem Biophys Res Commun 412(4):743–746

    Google Scholar 

  • Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524

    Google Scholar 

  • Andrew CD, Warwicker J, Jones GR, Doig AJ (2002) Effect of phosphorylation on alpha-helix stability as a function of position. Biochemistry 41(6):1897–1905

    Google Scholar 

  • Antz C, Bauer T, Kalbacher H, Frank R, Covarrubias M, Kalbitzer HR, Ruppersberg JP, Baukrowitz T, Fakler B (1999) Control of K+ channel gating by protein phosphorylation: structural switches of the inactivation gate. Nat Struct Biol 6(2):146–150

    Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Google Scholar 

  • Ashfield JT, Meyers T, Lowne D, Varley PG, Arnold JR, Tan P, Yang JC, Czaplewski LG, Dudgeon T, Fisher J (2000) Chemical modification of a variant of human MIP-1alpha; implications for dimer structure. Protein Sci 9(10):2047–2053

    Google Scholar 

  • Attwood PV, Ludwig K, Bergander K, Besant PG, Adina-Zada A, Krieglstein J, Klumpp S (2010) Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. Biochim Biophys Acta 1804(1):199–205

    Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Google Scholar 

  • Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7(3):147–153

    Google Scholar 

  • Barb AW, Freedberg DI, Battistel MD, Prestegard JH (2011) NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J Biomol NMR 51(1–2):163–171

    Google Scholar 

  • Barb AW, Meng L, Gao Z, Johnson RW, Moremen KW, Prestegard JH (2012) NMR Characterization of immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry 4618–4626

  • Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35(11):618–626

    Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13

    Google Scholar 

  • Bedford MT, Richard S (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18(3):263–272

    Google Scholar 

  • Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18(6):682–689

    Google Scholar 

  • Besant PG, Attwood PV (2005) Mammalian histidine kinases. Biochim Biophys Acta 1754(1–2):281–290

    Google Scholar 

  • Besant PG, Attwood PV (2010) Histidine phosphorylation in histones and in other mammalian proteins. Methods Enzymol 471:403–426

    Google Scholar 

  • Bhat AH, Mondal H, Chauhan JS, Raghava GP, Methi A, Rao A (2011) ProGlycProt: a repository of experimentally characterized prokaryotic glycoproteins. Nucleic Acids Res 40(Database issue) D388–D393

    Google Scholar 

  • Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C (2011) Structure of Sir2Tm bound to a propionylated peptide. Protein Sci 20(1):131–139

    Google Scholar 

  • Bielska AA, Zondlo NJ (2006) Hyperphosphorylation of Tau induces local polyproline II helix. Biochemistry 45(17):5527–5537

    Google Scholar 

  • Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15(3):203–206

    Google Scholar 

  • Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21(2):221–230

    Google Scholar 

  • Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Brown NR, Noble ME, Endicott JA, Johnson LN (1999) The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1(7):438–443

    Google Scholar 

  • Byeon IJ, Li H, Song H, Gronenborn AM, Tsai MD (2005) Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 12(11):987–993

    Google Scholar 

  • Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B, Testa G (2011) The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 43(4):681–688

    Google Scholar 

  • Chen YX, Du JT, Zhou LX, Liu XH, Zhao YF, Nakanishi H, Li YM (2006) Alternative O-GicNAcylation/O-phosphorylation of Ser(16) induce different conformational disturbances to the N terminus of murine estrogen receptor beta. Chem Biol 13(9):937–944

    Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6(5):812–819

    Google Scholar 

  • Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: Tudor tells the tale. Nat Rev Mol Cell Biol 12(10):629–642

    Google Scholar 

  • Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SS, Gu W, Zhao Y (2009) Molecular characterization of propionyllysines in non-histone proteins. Mol Cell Proteomics 8(1):45–52

    Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    ADS  Google Scholar 

  • Cohen P (2002a) Protein kinases–the major drug targets of the twenty-first century? Nat Rev Drug Discov 1(4):309–315

    Google Scholar 

  • Cohen P (2002b) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–130

    Google Scholar 

  • Coltart DM, Royyuru AK, Williams LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen XT, Danishefsky SJ, Live DH (2002) Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, di-, tri-, and hexasaccharide glycodomains. J Am Chem Soc 124(33):9833–9844

    Google Scholar 

  • Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8(9):724–732

    Google Scholar 

  • Corzana F, Busto JH, Engelsen SB, Jimenez-Barbero J, Asensio JL, Peregrina JM, Avenoza A (2006a) Effect of beta-O-glucosylation on L-Ser and L-Thr diamides: a bias toward alpha-helical conformations. Chem-Eur J 12(30):7864–7871

    Google Scholar 

  • Corzana F, Busto JH, Jimenez-Oses G, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A (2006b) New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation. J Am Chem Soc 128(45):14640–14648

    Google Scholar 

  • Corzana F, Busto JH, Jimenez-Oses G, de Luis MG, Asensio JL, Jimenez-Barbero J, Peregrina JM, Avenoza A (2007) Serine versus threonine glycosylation: the methyl group causes a drastic alteration on the carbohydrate orientation and on the surrounding water shell. J Am Chem Soc 129(30):9458–9467

    Google Scholar 

  • Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5(10):1087–1104

    Google Scholar 

  • Dehennaut V, Hanoulle X, Bodart JF, Vilain JP, Michalski JC, Landrieu I, Lippens G, Lefebvre T (2008) Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem Biophys Res Commun 369(2):539–546

    Google Scholar 

  • Del Rizzo PA, Trievel RC (2011) Substrate and product specificities of SET domain methyltransferases. Epigenetics 6(9):1059–1067

    Google Scholar 

  • DeMarco ML, Woods RJ (2008) Structural glycobiology: a game of snakes and ladders. Glycobiology 18(6):426–440

    Google Scholar 

  • Deshmukh L, Meller N, Alder N, Byzova T, Vinogradova O (2011) Tyrosine phosphorylation as a conformational switch: a case study of integrin beta3 cytoplasmic tail. J Biol Chem 286(47):40943–40953

    Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Google Scholar 

  • Dose A, Liokatis S, Theillet FX, Selenko P, Schwarzer D (2011) NMR profiling of histone deacetylase and acetyl-transferase activities in real time. ACS Chem Biol 6(5):419–424

    Google Scholar 

  • Du JT, Li YM, Wei W, Wu GS, Zhao YF, Kanazawa K, Nemoto T, Nakanishi H (2005) Low-barrier hydrogen bond between phosphate and the amide group in phosphopeptide. J Am Chem Soc 127(47):16350–16351

    Google Scholar 

  • Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057):806–809

    ADS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Google Scholar 

  • Egorova KS, Olenkina OM, Olenina LV (2010) Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc) 75(5):535–548

    Google Scholar 

  • Eichler J, Adams MW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69(3):393–425

    Google Scholar 

  • Erbel PJA, Karimi-Nejad Y, van Kuik JA, Boelens R, Kamerling JP, Vliegenthart JFG (2000) Effects of the N-linked glycans on the 3D structure of the free alpha-subunit of human chorionic gonadotropin. Biochemistry 39(20):6012–6021

    Google Scholar 

  • Erce MA, Pang CN, Hart-Smith G, Wilkins MR (2012) The methylproteome and the intracellular methylation network. Proteomics 12:1–23

    Google Scholar 

  • Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012) Characterization of semisynthetic and naturally N alpha-acetylated alpha-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of alpha-synuclein. J Biol Chem 287(34):28243–28262

    Google Scholar 

  • Fletcher CM, Harrison RA, Lachmann PJ, Neuhaus D (1994) Structure of a soluble, glycosylated form of the human-complement regulatory protein Cd59. Structure 2(3):185–199

    Google Scholar 

  • Freeze HH, Haltiwanger RS (2009) Other classes of ER/golgi-derived glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Fullgrabe J, Kavanagh E, Joseph B (2011) Histone onco-modifications. Oncogene 30(31):3391–3403

    Google Scholar 

  • Gao J, Xu D (2012) Correlation between posttranslational modification and intrinsic disorder in protein. Pac Symp Biocomput 94–103

  • Gardino AK, Yaffe MB (2011) 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol 22(7):688–695

    Google Scholar 

  • Garrett DS, Seok YJ, Peterkofsky A, Clore GM, Gronenborn AM (1998) Tautomeric state and pKa of the phosphorylated active site histidine in the N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system. Protein Sci 7(3):789–793

    Google Scholar 

  • Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282(41):30239–30245

    Google Scholar 

  • Graff J, Kim D, Dobbin MM, Tsai LH (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91(2):603–649

    Google Scholar 

  • Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jakel H, Kullmann M, Kriwacki RW, Hengst L (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128(2):269–280

    Google Scholar 

  • Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599

    Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Google Scholar 

  • Han S, Brunet A (2012) Histone methylation makes its mark on longevity. Trends Cell Biol 22(1):42–49

    Google Scholar 

  • Hart GW, Akimoto Y (2009) The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676

    Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022

    ADS  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858

    Google Scholar 

  • Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura SI (2011) An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Chem Eur J 17(8):2393–2404

    Google Scholar 

  • Heightman TD (2011) Chemical biology of lysine demethylases. Curr Chem Genomics 5(Suppl 1):62–71

    Google Scholar 

  • Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, Prudent M, Olschewski D, Zhang Y, Eliezer D, Lashuel HA (2012) Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: alpha-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 134(11):5196–5210

    Google Scholar 

  • Himmel S, Wolff S, Becker S, Lee D, Griesinger C (2010) Detection and identification of protein-phosphorylation sites in histidines through HNP correlation patterns. Angew Chem Int Ed Engl 49(47):8971–8974

    Google Scholar 

  • Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146

    Google Scholar 

  • Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    Google Scholar 

  • James TL (1985) Phosphorus-31 NMR as a probe for phosphoproteins. CRC Crit Rev Biochem 18(1):1–30

    Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Google Scholar 

  • Johnson LN, Lewis RJ (2001) Structural basis for control by phosphorylation. Chem Rev 101(8):2209–2242

    Google Scholar 

  • Jones BE, Rajagopal P, Klevit RE (1997) Phosphorylation on histidine is accompanied by localized structural changes in the phosphocarrier protein. HPr from Bacillus subtilis. Protein Sci 6(10):2107–2119

    Google Scholar 

  • Julien SG, Dube N, Hardy S, Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11(1):35–49

    Google Scholar 

  • Kar S, Sakaguchi K, Shimohigashi Y, Samaddar S, Banerjee R, Basu G, Swaminathan V, Kundu TK, Roy S (2002) Effect of phosphorylation on the structure and fold of transactivation domain of p53. J Biol Chem 277(18):15579–15585

    Google Scholar 

  • Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7(1):44–51

    Google Scholar 

  • Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078

    Google Scholar 

  • Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1:90

    Google Scholar 

  • Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10(9):618–629

    Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Google Scholar 

  • Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622

    Google Scholar 

  • Lakowski TM, t Hart P, Ahern CA, Martin NI, Frankel A (2010) Neta-substituted arginyl peptide inhibitors of protein arginine N-methyltransferases. ACS Chem Biol 5(11):1053–1063

    Google Scholar 

  • Landrieu I, Odaert B, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Inze D, Lippens G (2001) p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope. J Biol Chem 276(2):1434–1438

    Google Scholar 

  • Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, Sibille N, Schwalbe H, Saxena K, Langer T, Lippens G (2006) NMR analysis of a Tau phosphorylation pattern. J Am Chem Soc 128(11):3575–3583

    Google Scholar 

  • Landrieu I, Smet-Nocca C, Amniai L, Louis JV, Wieruszeski JM, Goris J, Janssens V, Lippens G (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PLoS ONE 6(6):e21521

    ADS  Google Scholar 

  • Larkin A, Imperiali B (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426

    Google Scholar 

  • Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024

    Google Scholar 

  • Leemhuis H, Packman LC, Nightingale KP, Hollfelder F (2008) The human histone acetyltransferase P/CAF is a promiscuous histone propionyltransferase. Chem Bio Chem 9(4):499–503

    Google Scholar 

  • Lehnertz B, Rogalski JC, Schulze FM, Yi L, Lin S, Kast J, Rossi FM (2011) p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol Cell 43(4):673–680

    Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Google Scholar 

  • Leroy A, Landrieu I, Huvent I, Legrand D, Codeville B, Wieruszeski JM, Lippens G (2010) Spectroscopic studies of GSK3{beta} phosphorylation of the neuronal Tau protein and its interaction with the N-terminal domain of apolipoprotein E. J Biol Chem 285(43):33435–33444

    Google Scholar 

  • Liang FC, Chen RP, Lin CC, Huang KT, Chan SI (2006) Tuning the conformation properties of a peptide by glycosylation and phosphorylation. Biochem Biophys Res Commun 342(2):482–488

    Google Scholar 

  • Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains—implications for image contrast. Magn Reson Med 35(1):30–42

    Google Scholar 

  • Lin H, Su X, He B (2012) Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol 7(6):947–960

    Google Scholar 

  • Liokatis S, Dose A, Schwarzer D, Selenko P (2010) Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J Am Chem Soc 132(42):14704–14705

    Google Scholar 

  • Liokatis S, Stuetzter A, Elsaesser S, Theillet FX, Klingberg R, van Rossum B, Schwarzer D, Allis CD, Fischle W, Selenko P (2012) Phosphorylation of histone H3 Serine 10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol 19(8):819–823

    Google Scholar 

  • Liou YC, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36(10):501–514

    Google Scholar 

  • Lippens G, Landrieu I, Hanoulle X (2008) Studying posttranslational modifications by in-cell NMR. Chem Biol 15(4):311–312

    Google Scholar 

  • Liu B, Lin Y, Darwanto A, Song X, Xu G, Zhang K (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J Biol Chem 284(47):32288–32295

    Google Scholar 

  • Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD (2011) The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Sci Signal 4(202):83

    Google Scholar 

  • Lu KP, Liou YC, Zhou XZ (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12(4):164–172

    Google Scholar 

  • Luo M (2012) Current chemical biology approaches to interrogate protein methyltransferases. ACS Chem Biol 443–463

  • Macdonald JM, LeBlanc DA, Haas AL, London RE (1999) An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C] aspirin. Biochem Pharmacol 57(11):1233–1244

    Google Scholar 

  • Macnaughtan MA, Kane AM, Prestegard JH (2005) Mass spectrometry assisted assignment of NMR resonances in reductively 13C-methylated proteins. J Am Chem Soc 127(50):17626–17627

    Google Scholar 

  • Mahajan A, Yuan C, Lee H, Chen ES, Wu PY, Tsai MD (2008) Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 1(51):re12

    Google Scholar 

  • Mak A, Smillie LB, Barany M (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75(8):3588–3592

    ADS  Google Scholar 

  • Marth JD, Grewal PK (2008) Mammalian glycosylation in immunity. Nat Rev Immunol 8(11):874–887

    Google Scholar 

  • Martin L, Latypova X, Terro F (2011) Post-translational modifications of Tau protein: implications for Alzheimer’s disease. Neurochem Int 58(4):458–471

    Google Scholar 

  • Matheis G, Whitaker JR (1984) 31P NMR chemical shifts of phosphate covalently bound to proteins. Int J Biochem 16(8):867–873

    Google Scholar 

  • Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘royal family’: Tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74

    Google Scholar 

  • Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L, Linsley PS (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4(7):527–531

    Google Scholar 

  • Meyer B, Moller H (2007) Conformation of glycopeptides and glycoproteins. Top Curr Chem 267:187–251

    Google Scholar 

  • Mittag T, Orlicky S, Choy WY, Tang X, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105(46):17772–17777

    ADS  Google Scholar 

  • Narimatsu Y, Kubota T, Furukawa S, Morii H, Narimatsu H, Yamasaki K (2010) Effect of glycosylation on Cis/trans isomerization of prolines in IgA1-hinge peptide. J Am Chem Soc 132(16):5548–5549

    Google Scholar 

  • Nielsen G, Schwalbe H (2011) NMR spectroscopic investigations of the activated p38alpha mitogen-activated protein kinase. Chem Bio Chem 12(17):2599–2607

    Google Scholar 

  • Norris KL, Lee J-Y, Yao T-P (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal 2(97):pe76

    Google Scholar 

  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867

    Google Scholar 

  • Owens NW, Braun C, O’Neil JD, Marat K, Schweizer F (2007) Effects of glycosylation of (2S,4R)-4-hydroxyproline on the conformation, kinetics, and thermodynamics of prolyl amide isomerization. J Am Chem Soc 129(38):11670–11671

    Google Scholar 

  • Owens NW, Lee A, Marat K, Schweizer F (2009) The implications of (2S,4S)-hydroxyproline 4-O-glycosylation for prolyl amide isomerization. Chem Eur J 15(40):10649–10657

    Google Scholar 

  • Owens NW, Stetefeld J, Lattova E, Schweizer F (2010) Contiguous O-galactosylation of 4(R)-hydroxy-l-proline residues forms very stable polyproline II helices. J Am Chem Soc 132(14):5036–5042

    Google Scholar 

  • Parry RV, Ward SG (2010) Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol 31(4):164–169

    Google Scholar 

  • Patchell VB, Vorotnikov AV, Gao Y, Low DG, Evans JS, Fattoum A, El-Mezgueldi M, Marston SB, Levine BA (2002) Phosphorylation of the minimal inhibitory region at the C-terminus of caldesmon alters its structural and actin binding properties. Biochim Biophys Acta 1596(1):121–130

    Google Scholar 

  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10(12):M111.012658

    Google Scholar 

  • Perez Y, Gairi M, Pons M, Bernado P (2009) Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 391(1):136–148

    Google Scholar 

  • Peter CJ, Akbarian S (2011) Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 17(7):372–379

    Google Scholar 

  • Pethe K, Bifani P, Drobecq H, Sergheraert C, Debrie AS, Locht C, Menozzi FD (2002) Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci USA 99(16):10759–10764

    ADS  Google Scholar 

  • Prabakaran S, Everley RA, Landrieu I, Wieruszeski JM, Lippens G, Steen H, Gunawardena J (2011) Comparative analysis of Erk phosphorylation suggests a mixed strategy for measuring phospho-form distributions. Mol Syst Biol 7:482

    Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456

    Google Scholar 

  • Rajagopal P, Waygood EB, Klevit RE (1994) Structural consequences of histidine phosphorylation: NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry 33(51):15271–15282

    Google Scholar 

  • Ramelot TA, Nicholson LK (2001) Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J Mol Biol 307(3):871–884

    Google Scholar 

  • Rich JR, Withers SG (2009) Emerging methods for the production of homogeneous human glycoproteins. Nat Chem Biol 5(4):206–215

    Google Scholar 

  • Riester D, Wegener D, Hildmann C, Schwienhorst A (2004) Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem Biophys Res Commun 324(3):1116–1123

    Google Scholar 

  • Roth J (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102(2):285–303

    Google Scholar 

  • Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36(3):179–188

    Google Scholar 

  • Salah Z, Alian A, Aqeilan RI (2012) WW domain-containing proteins: retrospectives and the future. Front Biosci 17:331–348

    Google Scholar 

  • Sanchez R, Zhou MM (2009) The role of human bromodomains in chromatin biology and gene transcription. Curr Opin Drug Discov Devel 12(5):659–665

    Google Scholar 

  • Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36(7):364–372

    Google Scholar 

  • Schutkowski M, Bernhardt A, Zhou XZ, Shen M, Reimer U, Rahfeld JU, Lu KP, Fischer G (1998) Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition. Biochemistry 37(16):5566–5575

    Google Scholar 

  • Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21(5):576–582

    Google Scholar 

  • Seet BT, Dikic I, Zhou MM, Pawson T (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7(7):473–483

    Google Scholar 

  • Selenko P, Frueh DP, Elsaesser SJ, Haas W, Gygi SP, Wagner G (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15(3):321–329

    Google Scholar 

  • Sibille N, Huvent I, Fauquant C, Verdegem D, Amniai L, Leroy A, Wieruszeski JM, Lippens G, Landrieu I (2011) Structural characterization by nuclear magnetic resonance of the impact of phosphorylation in the proline-rich region of the disordered Tau protein. Proteins 80:454–462

    Google Scholar 

  • Simanek EE, Huang DH, Pasternack L, Machajewski TD, Seitz O, Millar DS, Dyson HJ, Wong CH (1998) Glycosylation of threonine of the repeating unit of RNA polymerase II with beta-linked N-acetylglucosame leads to a turnlike structure. J Am Chem Soc 120(45):11567–11575

    Google Scholar 

  • Skrisovska L, Schubert M, Allain FHT (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46(1):51–65

    Google Scholar 

  • Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684

    Google Scholar 

  • Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35(10):547–555

    Google Scholar 

  • Slynko V, Schubert M, Numao S, Kowarik M, Aebi M, Allain FHT (2009) NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. J Am Chem Soc 131(3):1274–1281

    Google Scholar 

  • Smet-Nocca C, Wieruszeski JM, Melnyk O, Benecke A (2010) NMR-based detection of acetylation sites in peptides. J Pept Sci 16(8):414–423

    Google Scholar 

  • Smet-Nocca C, Broncel M, Wieruszeski JM, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP (2011) Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol BioSyst 7(5):1420–1429

    Google Scholar 

  • Smith BC, Denu JM (2007a) Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J Biol Chem 282(51):37256–37265

    Google Scholar 

  • Smith BC, Denu JM (2007b) Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD+ cleavage. J Am Chem Soc 129(18):5802–5803

    Google Scholar 

  • Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta 1789(1):45–57

    Google Scholar 

  • Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16(11):6486–6493

    Google Scholar 

  • Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M (2009) The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. Chem Med Chem 4(10):1568–1582

    Google Scholar 

  • Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    MathSciNet  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N (2009) N-Glycans. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Stark GR, Wang Y, Lu T (2011) Lysine methylation of promoter-bound transcription factors and relevance to cancer. Cell Res 21(3):375–380

    Google Scholar 

  • Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    Google Scholar 

  • Suh JY, Cai M, Clore GM (2008) Impact of phosphorylation on structure and thermodynamics of the interaction between the N-terminal domain of enzyme I and the histidine phosphocarrier protein of the bacterial phosphotransferase system. J Biol Chem 283(27):18980–18989

    Google Scholar 

  • Tagashira M, Iijima H, Toma K (2002) An NMR study of O-glycosylation induced structural changes in the alpha-helix of calcitonin. Glycoconj J 19(1):43–52

    Google Scholar 

  • Tait S, Dutta K, Cowburn D, Warwicker J, Doig AJ, McCarthy JE (2010) Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci USA 107(41):17627–17632

    Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    Google Scholar 

  • Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12(4):321–327

    Google Scholar 

  • Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavailles V (2010) Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 21(3):181–189

    Google Scholar 

  • Theillet FX, Liokatis S, Jost JO, Bekei B, Rose HM, Binolfi A, Schwarzer D, Selenko P (2012) Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy. J Am Chem Soc 134(18):7616–7619

    Google Scholar 

  • van Nuland NA, Boelens R, Scheek RM, Robillard GT (1995) High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. J Mol Biol 246(1):180–193

    Google Scholar 

  • Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. BBA-Rev Cancer 1815(1):75–89

    Google Scholar 

  • Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360

    Google Scholar 

  • Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15(5):211–218

    Google Scholar 

  • Vollmuth F, Geyer M (2011) Interaction of propionylated and butyrylated histone H3 lysine marks with Brd4 bromodomains. Angew Chem Int Ed Engl 49(38):6768–6772

    Google Scholar 

  • Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372

    Google Scholar 

  • Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160

    Google Scholar 

  • Weiwad M, Kullertz G, Schutkowski M, Fischer G (2000) Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett 478(1–2):39–42

    Google Scholar 

  • Werner-Allen JW, Lee CJ, Liu P, Nicely NI, Wang S, Greenleaf AL, Zhou P (2011) cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J Biol Chem 286(7):5717–5726

    Google Scholar 

  • Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buee L, Lippens G, Landrieu I (2001) 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides. J Biol Chem 276(27):25150–25156

    Google Scholar 

  • Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66(13):2109–2121

    Google Scholar 

  • Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102(2):371–386

    Google Scholar 

  • Wu WG, Pasternack L, Huang DH, Koeller KM, Lin CC, Seitz O, Wong CH (1999) Structural study on O-glycopeptides: glycosylation-induced conformational changes of O-GlcNAc, O-LacNAc, O-sialyl-LacNAc, and O-sialyl-lewis-X peptides of the mucin domain of MAdCAM-1. J Am Chem Soc 121(11):2409–2417

    Google Scholar 

  • Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12(8):469–482

    Google Scholar 

  • Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269(5228):1273–1278

    ADS  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932

    Google Scholar 

  • Xu AS, Macdonald JM, Labotka RJ, London RE (1999) NMR study of the sites of human hemoglobin acetylated by aspirin. Biochim Biophys Acta 1432(2):333–349

    Google Scholar 

  • Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3(3):177–186

    Google Scholar 

  • Yamaguchi Y, Kato K (2010) Dynamics and interactions of glycoconjugates probed by stable-isotope-assisted NMR spectroscopy. Method Enzymol 478:305–322

    Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    Google Scholar 

  • Yap KL, Zhou MM (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 50(12):1966–1980

    Google Scholar 

  • Yu CH, Si T, Wu WH, Hu J, Du JT, Zhao YF, Li YM (2008) O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of Tau. Biochem Biophys Res Commun 375(1):59–62

    Google Scholar 

  • Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K, Vocadlo DJ (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes Tau against aggregation. Nat Chem Biol 8(4):393–399

    Google Scholar 

  • Zhang K, Chen Y, Zhang Z, Zhao Y (2009) Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 8(2):900–906

    MathSciNet  Google Scholar 

  • Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63

    Google Scholar 

  • Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Kullertz G, Stark M, Fischer G, Lu KP (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and Tau proteins. Mol Cell 6(4):873–883

    Google Scholar 

Download references

Acknowledgments

We would like to thank Rachel Klevit, Olga Vinogradova, Tanja Mittag and Julie Forman-Kay for providing original NMR spectra for reproduction in this manuscript. F.X.T. acknowledges support from the Association pour la Researche contre le Cancer (ARC). P.S. acknowledges funding by an Emmy Noether research grant (SE1794/1-1) from the Deutsche Forschungsgemeinschaft (DFG). R. W. K. acknowledges support from NIH core grant P30CA21765 (to St. Jude Children’s Research Hospital) and 5R01CA082491 (to R. W. K.), and the American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital. We further express our gratitude to Angela Gronenborn and Georges Mer for expert advice and stimulating discussions in the course of writing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Selenko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theillet, FX., Smet-Nocca, C., Liokatis, S. et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54, 217–236 (2012). https://doi.org/10.1007/s10858-012-9674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9674-x

Keywords

Navigation