Skip to main content
Log in

Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Evidence suggests that AMP protein kinase (AMPK) is the main target of the phytochemical resveratrol (RSV) in mammalian cells. Data also indicates that RSV stimulates glucose metabolism; however, the molecular link between RSV and glucose uptake remains unknown. Herein, we provide evidence indicating that RSV stimulates glycolysis via sucrose non-fermenting 1 gene (SNF1, Saccharomyces cerevisiae orthologous of AMPK). S. cerevisiae cultures treated with 30 μM RSV showed an increase in extracellular acidification rate compared to untreated cells, indicating an elevated glycolytic flux. Also, RSV treatment increased transcription levels of two key glycolytic genes, hexokinase 2 (HXK2) and phosphofructokinase 1 (PFK1), as well as production of NADH. Moreover, RSV treatment inhibited mitochondrial respiration when glucose was used as a carbon source. Importantly, the effects of RSV on glycolysis were dependent of SNF1. Taken together, these findings suggest that SNF1 (AMPK in mammalian systems) is the molecular target of RSV in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar-Toral R et al (2014) Characterization of the effects of a polyunsaturated fatty acid (PUFA) on mitochondrial bioenergetics of chronologically aged yeast. J Bioenerg Biomembr 46:205–220. doi:10.1007/s10863-014-9550-3

    Article  CAS  Google Scholar 

  • Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. doi:10.1038/nature05354

    Article  CAS  Google Scholar 

  • Bernofsky C, Swan M (1973) An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53:452–458. doi:10.1016/0003-2697(73)90094-8

    Article  CAS  Google Scholar 

  • Breen DM, Sanli T, Giacca A, Tsiani E (2008) Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 374:117–122. doi:10.1016/j.bbrc.2008.06.104

    Article  CAS  Google Scholar 

  • Catalgol B, Batirel S, Taga Y, Ozer NK (2012) Resveratrol: french paradox revisited. Front Pharmacol 3:141. doi:10.3389/fphar.2012.00141

    Article  CAS  Google Scholar 

  • Escote X et al (2012) Resveratrol induces antioxidant defence via transcription factor Yap1p. Yeast 29:251–263. doi:10.1002/yea.2903

    Article  CAS  Google Scholar 

  • Gallis JL, Serhan N, Gin H, Couzigou P, Beauvieux MC (2012) Resveratrol plus ethanol counteract the ethanol-induced impairment of energy metabolism: (3)(1)P NMR study of ATP and sn-glycerol-3-phosphate on isolated and perfused rat liver. Pharmacol Res: Off J Ital Pharmacol Soc 65:387–395. doi:10.1016/j.phrs.2011.12.003

    Article  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  • George P (1947) Reaction between catalase and hydrogen peroxide. Nature 160:41–43

    Article  CAS  Google Scholar 

  • Hagman A, Sall T, Piskur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281:4805–4814. doi:10.1111/febs.13019

    Article  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855. doi:10.1146/annurev.biochem.67.1.821

    Article  CAS  Google Scholar 

  • Hawley SA et al (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11:554–565. doi:10.1016/j.cmet.2010.04.001

    Article  CAS  Google Scholar 

  • Hedbacker K, Carlson M (2006) Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot Cell 5:1950–1956. doi:10.1128/EC.00256-06

    Article  CAS  Google Scholar 

  • Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420. doi:10.2741/2854

    Article  CAS  Google Scholar 

  • Heyland J, Fu J, Blank LM (2009) Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology 155:3827–3837. doi:10.1099/mic.0.030213-0

    Article  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18. doi:10.1016/s0014-5793(97)01159-9

    Article  CAS  Google Scholar 

  • Kotyk A, Lapathitis G, Krenková S (1999) Glucose- and K + −induced acidification in different yeast species. Folia Microbiol (Praha) 44:295–298. doi:10.1007/BF02818550

    Article  CAS  Google Scholar 

  • Lagouge M et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  CAS  Google Scholar 

  • Liu K, Zhou R, Wang B, Mi MT (2014) Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 99:1510–1519. doi:10.3945/ajcn.113.082024

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  • Moreira AC, Silva AM, Santos MS, Sardao VA (2013) Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: investigation of the role of gender. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 53:18–26. doi:10.1016/j.fct.2012.11.031

    Article  CAS  Google Scholar 

  • Park SJ et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433. doi:10.1016/j.cell.2012.01.017

    Article  CAS  Google Scholar 

  • Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115–1144. doi:10.1002/yea.1026

    Article  CAS  Google Scholar 

  • Sassi N, Mattarei A, Azzolini M, Szabo I, Paradisi C, Zoratti M, Biasutto L (2014) Cytotoxicity of mitochondria-targeted resveratrol derivatives: interactions with respiratory chain complexes and ATP synthase. Biochim Biophys Acta 1837:1781–1789. doi:10.1016/j.bbabio.2014.06.010

    Article  CAS  Google Scholar 

  • Su H, Hung L, Chen J (2006) Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptoztocin-induced diabetic rats. Am J Endocrinol Metab 290:E1339–E1346. doi:10.1152/ajpendo.00487.2005

    Article  CAS  Google Scholar 

  • Teste MA, Duquenne M, Francois JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99. doi:10.1186/1471-2199-10-99

    Article  Google Scholar 

  • Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging (Albany NY) 4:146–158

    Google Scholar 

  • Tomé-Carneiro J, Larrosa M, Gonzalez-Sarrías A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  Google Scholar 

  • Um JH et al (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59:554–563. doi:10.2337/db09-0482

    Article  CAS  Google Scholar 

  • Ungvari Z et al (2009) Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297:H1876–H1881. doi:10.1152/ajpheart.00375.2009

    Article  CAS  Google Scholar 

  • Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucosestimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060. doi:10.1074/jbc.M110.176842

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from Instituto Tecnológico Superior de Ciudad Hidalgo (3308.100310) and Universidad Autónoma de Querétaro (FCQ201417). The PROMEP program contributes with a scholarship grant for LAMP. The authors thank to Ana Karen Padilla-Pérez, Cecilia Martínez-Ortiz, Mayra Alejandra Soto-Villagómez, Josué Misael Zamudio-Bolaños, Andrés Carrillo-Garmendia and Maria Irene Cornelio-Martinez for the technical support in kinetic assays.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minerva Ramos-Gomez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madrigal-Perez, L.A., Nava, G.M., González-Hernández, J.C. et al. Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism. J Bioenerg Biomembr 47, 331–336 (2015). https://doi.org/10.1007/s10863-015-9615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9615-y

Keywords

Navigation