Skip to main content
Log in

An Explicit Theory for Pulses in Two Component, Singularly Perturbed, Reaction–Diffusion Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In recent years, methods have been developed to study the existence, stability and bifurcations of pulses in singularly perturbed reaction–diffusion equations in one space dimension, in the context of a number of explicit model problems, such as the Gray–Scott and the Gierer–Meinhardt equations. Although these methods are in principle of a general nature, their applicability a priori relies on the characteristics of these models. For instance, the slow reduced spatial problem is linear in the models considered in the literature. Moreover, the nonlinearities in the fast reduced spatial problem are of a very specific, polynomial, nature. These properties are crucially used, especially in the stability and bifurcation analysis. In this paper, we present an explicit theory for pulses in two-component singularly perturbed reaction–diffusion equations that significantly extends and generalizes existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexander, J., Gardner, R.A., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Chen, W., Ward, M.J.: Oscillatory instabilities of multi-spike patterns for the one-dimensional Gray–Scott model. Eur. J. Appl. Math. 20, 187–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doelman, A., Kaper, T.J., Zegeling, P.: Pattern formation in the one-dimensional Gray–Scott model. Nonlinearity 10, 523–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J. 50, 443–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doelman, A., Gardner, R. A., Kaper, T.J.: A stability index analysis of 1-D patterns of the Gray–Scott model. Memoirs AMS 155. (2002)

  6. Doelman, A., Iron, D., Nishiura, Y.: Destabilization of fronts in a class of bi-stable systems. SIAM J. Math. Anal. 35(6), 1420–1450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doelman, A., Hek, G.M., Valkhoff, N.J.M.: Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity 20, 357–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doelman, A., Kaper, T.J., Promislow, K.: Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal. 38, 1760–1787 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doelman, A., Rademacher, J., van der Stelt, S.: Hopf dances near the tips of Busse balloons. Discret. Continuous Dyn. Sys. 5, 61–92 (2012)

    Article  MATH  Google Scholar 

  10. Ei, S.: The motion of weakly-interacting pulses in reaction–diffusion systems. J. Dyn. Differ. Equ. 14, 85–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fenichel, N.: Geometrical singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gardner, R.A., Jones, C.K.R.T.: Stability of travelling wave solutions of diffusive predator–prey systems. Trans. AMS 327(2), 465–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  15. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  16. Ikeda, H., Nishiura, Y., Yasumasa, Suzuki, H.: Stability of traveling waves and a relation between the Evans function and the SLEP equation. J. Reine Angew. Math. 475, 1–37. 35B25 (35K45 35K55) (1996)

  17. Iron, D., Ward, M.J., Wei, J.: The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Phys. D 150, 25–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iron, D., Wei, J., Winter, M.: Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 49, 358–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, C.K.R.T.: Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Am. Math. Soc. 286, 431–469 (1984)

    Article  MATH  Google Scholar 

  20. Kolokolnikov, T., Ward, M.J., Wei, J.: The existence and stability of spike equilibria in the one-dimensional Gray–Scott model: the pulse-splitting regime. Phys. D 202, 258–293 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolokolnikov, T., Ward, M.J., Wei, J.: The existence and stability of spike equilibria in the one-dimensional Gray–Scott model: the low feed-rate regime. Stud. Appl. Math. 115, 21–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolokolnikov, T., Ward, M.J., Wei, J.: Pulse-splitting for some reaction–diffusion systems in one-space dimension. Stud. Appl. Math. 114, 115–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolokolnikov, T., Erneux, T., Wei, J.: Mesa-type patterns in the one-dimensional Brusselator and their stability. Phys. D 214, 63–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kolokolnikov, T., Ward, M.J., Wei, J.: Self-replication of mesa patterns in reaction–diffusion models. Phys. D 236(2), 104–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, J.M., Hillen, T., Lewis, M.A.: Pattern formation in prey–taxis systems. J. Biol. Dyn. 3, 551573 (2009)

    Article  MathSciNet  Google Scholar 

  26. Morimoto, K.: Construction of multi-peak solutions to the Gierer–Meinhardt system with saturation and source term. Nonlinear Anal. 71, 2532–2557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishiura, Y., Ueyama, D.: A skeleton structure of self-replicating dynamics. Phys. D 130, 73–104 (1999)

    Article  MATH  Google Scholar 

  28. Nishiura, Y., Ueyama, D.: Spatio-temporal chaos for the Gray–Scott model. Phys. D 150, 137–162 (2001)

    Article  MATH  Google Scholar 

  29. Promislow, K.: A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal. 33(6), 1455–1482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sandstede, B.: Stability of travelling waves. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, II, pp. 983–1055. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  31. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  32. Sun, W., Ward, M.J., Russell, R.: The slow dynamics of two-spike solutions for the Gray–Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst. 4(4), 904–953 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-order Differential Equations, 2nd edn. Oxford University Press, Oxford (1962)

    MATH  Google Scholar 

  34. van der Ploeg, H., Doelman, A.: Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction–diffusion equations. Indiana Univ. Math. J. 54(5), 1219–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. van der Stelt, S., Doelman, A., Hek, G.M., Rademacher, J.: Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J. Nonlinear Sci. 23(1), 39–95 (2012)

    Article  Google Scholar 

  36. van Heijster, P., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9(2), 292–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Veerman, F.: Hopf bifurcations for localised pulses in singularly perturbed reaction–diffusion systems (preprint)

  38. Veerman, F., Doelman, A.: Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J. Appl. Dyn. Syst. 12(1), 28–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, 2nd edn. Springer, New York (1996)

    Book  MATH  Google Scholar 

  40. Ward, M.J., Wei, J.: The existence and stability of asymmetric spike patterns in the Schnakenburg model. Stud. Appl. Math. 109, 229–264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, J.: Existence, stability and metastability of point condensation patterns generated by the Gray–Scott system. Nonlinearity 12, 593–616 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei, J., Winter, M.: On the Gierer–Meinhardt equation with saturation. Commun. Contemp. Math. 6(2), 259–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was funded by NWO through the VIDI-grant ‘Formation of singularities in natural systems’, awarded to V. Rottschäfer, Universiteit Leiden, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjen Doelman.

Additional information

Dedicated to Klaus Kirchgässner, in gratitude for his inspiration and stimulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doelman, A., Veerman, F. An Explicit Theory for Pulses in Two Component, Singularly Perturbed, Reaction–Diffusion Equations. J Dyn Diff Equat 27, 555–595 (2015). https://doi.org/10.1007/s10884-013-9325-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9325-2

Keywords

Navigation