Skip to main content
Log in

Premating Isolation is Determined by Larval Rearing Substrates in Cactophilic Drosophila mojavensis. VII. Effects of Larval Dietary Fatty Acids on Adult Epicuticular Hydrocarbons

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Low concentrations of dietary triacylglycerols including tristearin, triolein, and tripalmitolein, were assessed to determine their effects during egg to pupal stages on adult epicuticular hydrocarbon (EHC) variation in cactophilic Drosophila mojavensis. Triacylglycerols were added singly and in combination at concentrations of 1%, 3%, and 9% to a lipid-free culture medium. Control diets included Carolina Drosophila and lipid-free media. Egg to adult viability was reduced at triacylglycerol concentrations greater than 1%, except for tristearin. Both triolein and tripalmitolein increased EHC amounts to levels similar to those in combination and control diets. Tristearin caused significantly lower quantities of EHCs in adult flies than triolein or tripalmitolein, consistent with previous studies on reduced tristearin assimilation into adult EHCs. We rejected the hypothesis that unsaturated and saturated triacylglycerols were assimilated into unsaturated and saturated adult EHCs, respectively. Since these triacylglycerols comprise a fraction of known lipids in the columnar cacti used for breeding in nature, and EHCs serve as contact pheromones in D. mojavensis, these and other naturally occurring triacylglycerols may provide a direct causal link between host plant use and patterns of chemically mediated mate choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becerra, J. X. 1997. Insects on plants: Macroevolutionary chemical trends in host use. Science 276:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E. A. and Chapman, R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman and Hall, London.

    Google Scholar 

  • Blomquist, G. J. 2003. Biosynthesis and ecdysteroid regulation of housefly sex pheromone production, pp. 231–252, in G. J. Blomquist and R. C. Vogt (eds.). Insect Pheromone Biochemistry and Molecular Biology. Elsevier, San Diego.

    Google Scholar 

  • Blomquist, G. J., Dillworth, J. W., and Adams, T. S. 1987. Biosynthesis and endocrine regulation of sex pheromone production in Diptera, pp. 217–250, in G. D. Prestwitch and G. J. Blomquist (eds.). Pheromone Biochemistry. Academic Press, London.

    Google Scholar 

  • Boake, C. R. B., Deangelis, M. P., and Andreadis, D. K. 1997. Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed fly Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 94:12442–12445.

    Article  PubMed  CAS  Google Scholar 

  • Brazner, J. C. and Etges, W. J. 1993. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. II. Effects of larval substrates on time to copulation, mate choice, and mating propensity. Evol. Ecol. 7:605–624.

    Article  Google Scholar 

  • Buczkowski, G., Kumar, R., Suib, S. L., and Silverman, J. 2005. Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J. Chem. Ecol. 31:829–843.

    Article  PubMed  CAS  Google Scholar 

  • Carson, H. L. 2000. Sexual selection in populations: the facts require a change in the genetic definition of the species, pp. 495–512, in R. S. Singh and C. Krimbas (eds.). Evolutionary Genetics: From Molecules to Morphology. Cambridge University Press, New York.

    Google Scholar 

  • Chan Yong, T. P. and Jallon, J. M. 1986. Synthese de novo d’hydrocarbures potentiellement aphrodisiaques chez les Drosophiles. C. R. Acad. Sci. Paris 303:197–202.

    Google Scholar 

  • Dallerac, R., Labeur, C., and Wicker-Thomas, C. 2000. A Delta-9 desaturase gene with a different substrate specificity is responsible for cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97:9449–9454.

    Article  PubMed  CAS  Google Scholar 

  • De Renobales, M. and Blomquist, G. J. 1984. Biosynthesis of medium chain fatty acids in Drosophila melanogaster. Arch. Biochem. Biophy. 228:407–414.

    Article  Google Scholar 

  • Etges, W. J. 1989. Evolution of developmental homeostasis in Drosophila mojavensis. Evol. Ecol. 3:189–201.

    Article  Google Scholar 

  • Etges, W. J. 1992. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. Evolution 46:1945–1950.

    Article  Google Scholar 

  • Etges, W. J. 1998. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life history trait. Am. Nat. 152:129–144.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J. 2002. Divergence in mate choice systems: Does evolution play by rules? Genetica 116:151–166.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J. and Ahrens, M. A. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158:585–598.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J. and Heed, W. B. 1987. Sensitivity to larval density in populations of Drosophila mojavensis: Influences of host plant variation on components of fitness. Oecologia 71:375–381.

    Article  Google Scholar 

  • Etges, W. J. and Jackson, L. L. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VI. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:2125–2149.

    Article  PubMed  CAS  Google Scholar 

  • Etges, W. J., Johnson, W. R., Duncan, G. A., Huckins, G., and Heed, W. B. 1999. Ecological genetics of cactophilic Drosophila, pp. 164–214, in R. Robichaux (ed.). Ecology of Sonoran Desert Plants and Plant Communities. University of Arizona Press, Tucson.

    Google Scholar 

  • Ferveur, J. F., Cobb, M., and Jallon, J. M. 1989. Complex chemical messages in Drosophila, pp. 397–409, in N. Singh and N. Strausfeld (eds.). Neurobiology of Sensory Systems. Plenum Press, New York.

    Google Scholar 

  • Fogleman, J. C. and Abril, J. R. 1990. Ecological and evolutionary importance of host plant chemistry, pp. 121–141, in J. S. F. Barker, W. T. Starmer, and R. J. MacIntyre (eds.). Ecological and Evolutionary Genetics of Drosophila. Plenum, New York.

    Google Scholar 

  • Fogleman, J. C. and Danielson, P. B. 2001. Chemical interactions in the cactus–microorganism–Drosophila model system of the Sonoran Desert. Am. Zool. 41:877–889.

    Article  CAS  Google Scholar 

  • Fogleman, J. C. and Kircher, H. W. 1986. Differential effects of fatty acid chain length on the viability of two species of cactophilic Drosophila. Comp. Biochem. Physiol. 83A:761–764.

    Article  CAS  Google Scholar 

  • Fogleman, J. C., Duperret, S. M., and Kircher, H. W. 1986. The role of phytosterols in host plant utilization by cactophilic Drosophila. Lipids 21:92–96.

    Article  CAS  Google Scholar 

  • Funk, D. J. 1998. Isolating a role for natural selection in speciation: Host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–1759.

    Article  Google Scholar 

  • Funk, D. J., Filchak, K. E., and Feder, J. L. 2002. Herbivorous insects: Model systems for the comparative study of speciation ecology. Genetica 116:251–267.

    Article  PubMed  Google Scholar 

  • Gerhardt, H. C. and Huber, F. 2002. Acoustic Communication in Insects and Anurans. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Gibbs, A. G., Louie, A. K., and Ayala, J. A. 1998. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: Is thermal acclimation beneficial? J. Exp. Biol. 201:71–80.

    PubMed  CAS  Google Scholar 

  • Gleason, J. M., Jallon, J.-M., Rouault, J.-D., and Ritchie, M. G. 2005. Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia. Genetics 171:1789–1798.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, M. D. 2002. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication. Oxford Univ. Press, New York.

    Google Scholar 

  • Harborne, J. B. 1982. Introduction to Ecological Biochemistry. Academic Press, New York.

    Google Scholar 

  • Heed, W. B. 1982. The origin of Drosophila in the Sonoran Desert, pp. 65–80, in J. S. F. Barker and W. T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus–Yeast–Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Heed, W. B. and Mangan, R. L. 1986. Community ecology of the Sonoran Desert Drosophila, pp. 311–345, in M. Ashburner, H. L. Carson, and J. N. Thompson (eds.). The Genetics and Biology of Drosophila. Academic Press, New York.

    Google Scholar 

  • Howard, R. W. 1998. Ontogenetic, reproductive, and nutritional effects on the cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia tarsalis (Hymenoptera: Bethylidae). Ann. Entomol. Soc. Am. 91:101–112.

    CAS  Google Scholar 

  • Howard, R. W., Howard, C. D., and Colquhoun, S. 1995. Ontogenetic and environmentally induced changes in cuticular hydrocarbons of Oryzaephilus surinamensis (Coleoptera: Cucujidae). Ann. Entomol. Soc. Am. 88:485–495.

    CAS  Google Scholar 

  • Jallon, J.-M. 1984. A few chemical words exchanged during courtship and mating of Drosophila melanogaster. Behav. Gen. 14:441–478.

    Article  CAS  Google Scholar 

  • Jallon, J.-M., Antony, C., Chang Yong, T. P., and Maniar, S. 1986. Genetic factors controlling the production of aphrodisiac substance in Drosophila, pp. 445–452, in M. Porchet, J. C. Andries, and A. Dhainaut (eds.). Advances in Invertebrate Reproduction. Elsevier, Amsterdam.

    Google Scholar 

  • Jallon, J.-M. and Wicker-Thomas, C. 2003. Genetic studies on pheromone production in Drosophila, pp. 253–281, in G. J. Blomquist and R. C. Vogt (eds.). Insect Pheromone Biochemistry and Molecular Biology. Elsevier, San Diego.

    Google Scholar 

  • Keith, A. D. 1967a. Fatty acid metabolism in D. melanogaster: Formation of palmitoleate. Life Sci. 6:213–218.

    PubMed  CAS  Google Scholar 

  • Keith, A. D. 1967b. Fatty acid metabolism in Drosophila melanogaster: Interaction between dietary fatty acids and de novo synthesis. Comp. Biochem. Physiol. 21:587–600.

    Article  PubMed  CAS  Google Scholar 

  • Labeur, C., Dallerac, R., and Wicker-Thomas, C. 2002. Involvement of Desat1 gene in the control of Drosophila melanogaster pheromone biosynthesis. Genetica 114:269–274.

    Article  PubMed  CAS  Google Scholar 

  • Liang, D. and Silverman, J. 2000. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416.

    Article  PubMed  CAS  Google Scholar 

  • Markow, T. A. 1982. Mating systems of cactophilic Drosophila, pp. 273–287, in J.\ S. F. Barker and W. T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus–Yeast–Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Nosil, P., Crespi, B. J., and Sandoval, C. P. 2002. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:441–443.

    Article  CAS  Google Scholar 

  • Pennanec’h, M., Bricard, L., Kunesch, G., and Jallon, J.-M. 1997. Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J. Insect Physiol. 43:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Pennanec’h, M., Ferveur, J. F., Pho, D. B., and Jallon, J.-M. 1991. Insect fatty acid related pheromones: A review of their biosynthesis, hormonal regulation and genetic control. Ann. Soc. Entomol. Fr. 27:245–263.

    Google Scholar 

  • Sandoval, C. P. and Nosil, P. 2005. Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks. Evolution 59:2405–2413.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute, I. 2004. SAS/STAT 9.1.2. SAS Institute, Cary, NC.

  • Savarit, F. and Ferveur, J.-F. 2002. Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J. Exp. Biol. 205:3241–3249.

    PubMed  CAS  Google Scholar 

  • Savarit, F., Sureau, G., Cobb, M., and Ferveur, J.-F. 1999. Genetic elimination of known pheromones reveals the fundamental chemical bases of mating and isolation in Drosophila. Proc. Nat. Acad. Sci. USA 96:9015–9020.

    Article  PubMed  CAS  Google Scholar 

  • Scheiner, S. M. 1993. Manova: Multiple response variables and multispecies interactions, pp. 94–112, in S. M. Scheiner and J. Gurevitch (eds.). Design and Analysis of Ecological Experiments. Chapman and Hall, New York.

    Google Scholar 

  • Stennett, M. D. and Etges, W. J. 1997. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23:2803–2824.

    CAS  Google Scholar 

  • Thompson, J. N. 1994. The Coevolutionary Process. University of Chicago Press, Chicago.

    Google Scholar 

  • Toolson, E. C. and Kuper-Simbron, R. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects of sexual dimorphism and thermal-acclimation ability. Evolution 43:468–472.

    Article  Google Scholar 

  • Toolson, E. C., Markow, T. A., Jackson, L. L., and Howard, R. W. 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 83:1165–1176.

    CAS  Google Scholar 

  • Wicker-Thomas, C., Henriet, C., and Dallerac, R. 1997. Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster. Insect Biochem. Mol. Biol. 27:963–972.

    Article  PubMed  CAS  Google Scholar 

  • Wicker-Thomas, C. and Jallon, J.-M. 2001. Control of female pheromones in Drosophila melanogaster by homeotic genes. Genet. Res. (Camb) 78:235–242.

    Article  CAS  Google Scholar 

  • Wigglesworth, V. B. 1988. The source of lipids and polyphenols for the insect cuticle: The role of fat body, oenocytes and oenocytoids. Tissue Cell 20:919–932.

    Article  CAS  PubMed  Google Scholar 

  • Woodrow, R. J., Grace, J. K., Nelson, L. J., and Haverty, M. I. 2000. Modification of cuticular hydrocarbons of Cryptotermes brevis (Isoptera: Kalotermitidae) in response to temperature and relative humidity. Environ. Entomol. 29:1100–1107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. C. Fogleman for information about host cactus chemistry, B. Durham for access to the GC, and S.J. Seybold and two anonymous reviewers for constructive comments. This work was partially supported by an REU supplement to NSF INT-9724790 (to W. J. Etges and W. B. Heed), NSF DEB-0211125 (to W.J.E.), a SILO Undergraduate Research Fellowship (SURF) grant from the Arkansas Science Information Liaison Office, and the Sturgis Fellowship program at the University of Arkansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Etges.

Electronic supplementary material

Below is the link to the electronic supplemetary material.

10886_2006_9187_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etges, W.J., Veenstra, C.L. & Jackson, L.L. Premating Isolation is Determined by Larval Rearing Substrates in Cactophilic Drosophila mojavensis. VII. Effects of Larval Dietary Fatty Acids on Adult Epicuticular Hydrocarbons. J Chem Ecol 32, 2629–2646 (2006). https://doi.org/10.1007/s10886-006-9187-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9187-8

Keywords

Navigation